ISPRS, Vol.34, Part 2W2, “Dynamic and Multi-Dimensional GIS”, Bangkok, May 23-25, 2001
376
1) is chosen
(p(x) = 1 - |x|
if
x e [- l,l]
(/)(x) = 0
f
x <£ [— l,l]
Figl : linear interpolation
By computation, we can get h(-1) = 1/4, h(0) = 1/2, h(1) = 1/4.
) = \^ x+ ')+- 0
C+i (x ) = — C, (x - 2 ' ) +—C, (x ) + — C, (x + 2 1 )
Therefore we have
The figure 2 shows the wavelet associated to the scaling
function.
Fig2: wavelet ijj(x)
The above £ trous algorithm is easily extensible to the two
dimensions space. This leads to convolution with a mask of 3x3
pixels for the wavelet connected to linear interpolation. The
coefficients of the mask are
At each scale j, we obtain a set of Wj(x) (we also call it wavelet
plan) which has the same number of pixels as the image.
If a B 3 -spline for the scaling function is chosen, the coefficients of
convolution mask in one dimension are (1/16,1/4,3/8,1/4,1/16),
and in two dimensions
1
1
3
1
1
256
64
128
64
256
1
1
3
1
1
64
16
32
16
64
3
3
9
3
3
128
32
64
32
128
1
1
3
1
1
64
16
32
16
64
1
1
3
1
1
256
64
128
64
256
3.Detecting Edges Using the A Trous Algorithm
From above analysis, it is found that an image can be
decomposed into several wavelet planes at different scales,
some of high frequency information is included in the
wavelet planes. Therefore we can detect edges of a remote
sensing image by using the following procedure
1) Initialize i = 0, and input an original image fi(x,y);
2) Convolute the image with the low pass filter h(x,y)
fi+i(x,y) = fi(x,y) * h(x,y)
3) Get a wavelet plan
w i+ i(x,y) = fi(x,y)-f i+1 (x,y)
4) If i < n (the n is defined the decomposition number)
then i = i+1, and return to the step 2);
5) Repeat the steps 2), 3), 4) until i = n.
In order to process the image borders, the mirror symmetry
method is adopted, namely,
In the row direction:
f(-U) = f(U)
f(i+k, j) = f(i-k, j)
Where i < N, k = 1,2 N is the total rows of the image.
In the column direction:
f(i. -j) = ffl, j)
f(i, j+k) = f(i, j-k)
Where j ^ N, k = 1,2,..., N is the total columns of the image.
In the experiment, the n is set to 3, we add the three wavelet
planes w1, w2 and w3 to get an resultant image which contains
abundant high frequency information and little low frequency
information.
4.Discussing and Conclusions