3-2-3
(1)
x~
X'
"«1
Cl2
* 3 ]
0
Y
=
y s
+
b \
b 2
b 3
- S sin 3
Z
X.
_ C 1
c 3j
-S cos 0
~x
~x;
«1
“2
-.Ssin2^ siny
Y
=
Y s
+
b 2
b 3
Scos 25
Z
X.
_ C 1
C 2
c 3_
- S sin 2<5c cos /
Where a, = cos cp cos k - sin cp sin co sin k
a 2 =-cos (p sin re - sirup sin atcosK
a 3 = -sin^cos<y
6, = cosy; sin k
b 2 = COSCOCOSK
¿3 = -siniy
c, = sin^cos/c + COS $9 sin ¿y sin/c
c 2 =- sin (p sin K + COS (p sin CO COS K
c 3 = cos cp COS CO
For conic scanner, a is the angle between scanner rotating axis and Y axis, P is the angle
between the normal of mirror and scanner rotating axis. When a and p fixed, y and 8 can be
obtained from following equations:
r = tg
-1
sin p sin S
(cos a sin p cos 3 - sin a cos p)
V (2)
S = cos 1 (sin a sin p cos 3 + cos a cos P)
3.Positioning Accuracy of the System
It is necessary to linearize Eqs(l) and Eqs(l.a) for practical operation. In Eqs(l) and Eqs(l.a),
the parameters {X S ,Y S ,Z s ,(p,CO,K,S ,3) are observed values. We may substitute their values
by their approximate values plus their corresponding increments
(dX s , dY s , dz s ,d(p, dco, d/C, dS, d3). X, Y and Z are calculated coordinates from observed
values of the system, and corrections dX, dY and dZ may be added with the substitution of X+dX,
Y+dY and Z+dZ. Thus the general form of the error equations are: