4-3-4
Table 2 Results of cameras calibration
Interior
orientation
Left Camera
Right camera
Value
Standard deviation
Value
Standard deviation
m x
0.008169411
5.9824897e-006
0.0081828493
6.7596162e-006
m v
0.0082745984
6.0449712e-006
0.0082854156
6.8312629e-006
353.97322
4.0598375
400.6065
3.9840409
y P
240.72816
3.2573169
268.64533
3.3235939
a
2.7212889e-005
4.9883761e-005
-2.9216815e-005
4.7816647e-005
K,
0.00011596756
0.00010720426
-4.713952e-005
0.00013371454
K 2
-2.0095956e-005
1.7121584e-005
6.543749 le-007
2.2867503e-005
K 3
1.0714098e-006
8.4285048e-007
2.190873e-007
1.209744e-006
p,
0.00011598028
1.9949292e-005
-0.00013673192
1.9799675e-005
P 2
-3.8990547e-005
1.732784 le-005
-6.4237254e-005
1.7044718e-005
4 SYSTEM RELATIVE ORIENTATION
The theoretical analysis and the results of relative orientation
for images obtained during first technological mission have
shown that the accuracy of simple relative orientation
procedure (eliminating vertical parallaxes for corresponding
points) results in unreliable estimation of relative orientation
parameters.
To obtain accurate relative orientation the following approach
was applied. Firstly, to use spatial outdoor test scene for
relative orientation; secondly, to apply special coded targets for
precise subpixel targets location in the image.
For estimation of relative orientation parameters the coplanarity
condition was used:
F = xx'(c{b{ - b{'c{) + x'f{t>2c{'- bi'c'i) + xz'(b{ci'- b^c{) +
_ + Wi) + */'(%$' - -
- x'zbfcj - zz'b^c'i - zf = 0
b'l = - sin aB , b"l = - sin a'B cos co'B ,
b'2 = - cos aB , b"2 = cos a'B cos co'B ,
b'3 = 0, b"3 = - sin co'B ,
c'l= cos aB sin kB c'2= sin aB sin kB ,
c"l = cos a'B sin k'B - sin a'B sin co'B cos k'B ,
c"2 = sin a'B sin k'B + cos a'B sin co'B cos k'B ,
c'2= cos kB , c"3 = cos co'B cos k'B ,
a B , k b and a' B , co' B , k' b - elements of relative orientation,
refering to the left and right images, correspondingly, x, z, f and
x', z' /' - coordinates of points and focal distance of left and
right images. To determine the elements of relative orientation
the model of least squares method was used.
To prepare outdoor spatial test scene 22 contrast coded targets
were located at different distances from cameras in range of 10-
25m. Targets positioning provides approximately equal density
of targets in the images.
The stereo images of the test scene in original software
environment is shown in the Figure 4.
where
Figure 5. Stereo images of outdoor test scene for relative orientation using coded targets