s'* 1 situés* sur une perpendiculaire à la droite ow, et ces points«'' et«' seront les
projections des divers sommets s et des divers sommets s des diverses pyramides
qui, ayant le quadrilatère abcd pour base, seront coupés par un plan parallèle au
plan (s, o, «) ou au plan (s, o, w) suivant un parallélogramme se projetant, sur le
plan de base, suivant un carré.
CHAPITRE V.
UES DIFFÉRENTS SYSTÈMES DE PROJECTIONS.
157. Dans ce qui précède, nous n’avons considéré que des projections ortho
gonales sur deux plans perpendiculaires entre eux; en généralisant la même idée
on peut nommer projection d’un point sur un plan , le point où une droite quel
conque passant par le point donné rencontre ce plan , mais le système de pro
jections étudié ci-dessus est le plus usité; cependant on emploie quelquefois
d’autres systèmes pour lesquels on ne fait plus usage que d’un seul plan de pro
jection, et, parmi ceux-là, le plus simple est celui qui constitue les plans côtés et
nivelés. Un point est déterminé dans ce système par sa projection orthogonale
sur un plan, qu’on nomme plan de comparaison, et que l’on choisit ordinaire
ment au-dessus de tous les points du système projeté, et par un nombre écrit à
côté de la projection du point et qui en fait connaître la distance au plan de
comparaison. Ce nombre prend le nom de cote du point. Les cotes des points situées
au-dessus du plan de comparaison seraient négatives ; on voit que ce système
rentre dans le système général, car, à l’aide des cotes de chaque point du système
projeté, on pourrait en obtenir la projection sur un plan quelconque, perpendi
culaire au plan de comparaison, en choisissant une ligne de terre arbitraire,
abaissant de la projection connue de chaque point une perpendiculaire sur cette
ligne, et portant du côté convenable des distances égales aux cotes de ces
points ( n° 5 ).