Full text: Theorie und Darstellung der Beleuchtung gesetzmäßig gestalteter Flächen

182 
M 2 s m , M 2 s n , welche x berühren, entsprechen aber beziehungs 
weise nur die zwei Isophotenpunkte -f-w, — w und —w> 
-\-io, welche die Wendepunkte der Unduloide sind. Die 
Bcleuchtungsintensitäten dieser Wendepunkte erhalten wir, 
wenn wir von s m und s n Senkrechte auf die Intensitätsscala 
fällen. Die entsprechenden Fusspunkte it und v bestimmen 
auf dieser die zugehörigen Intensitäten. 
Ziehen wir durch -j-iv eine Senkrechte -\-wg auf M 2 s m } 
so ist -\-wg die Normale und M™g die Subnormale des Punk 
tes Hierdurch erhalten wir auf bekannte Weise die 
Isophotenpunkte des Wendekreises K'°. In gleicher Weise 
bestimmen wir auf dem durch -j-l 0 ' gehenden Parallelkreis 
Zf"*" 1 ' die Isophotenpunkte. Da die Normale des Punktes 
-j-1 () und die des Punktes -}-l () parallel sind, so werden 
auch die Grundrissprojectionen der Isophotenpunkte der Pa 
rallelkreise K~ rl und^ durch dieselben Radienvectoren 
bestimmt. Dasselbe gilt von je zwei Parallelkreisen, welche 
die Meridiancurve in Punkten schneiden, denen parallele 
Normalen angehören. Wir brauchen hiernach nur für die 
jenigen Parallelkreise die Intensitätsscala zu bestimmen, 
welche auf der von den Kreisen K lu und K begrenzten Flächen 
zone liegen. In dem Wendekreis K w fallen zwei jener Kreise 
zusammen; folglich sind die Isophoten der Rotationkegel 
fläche, welche in dem Wendekreis K w das Unduloid berührt, 
Tangenten an den Isophoten des Unduloids, und somit be 
rühren die Radienvectoren, welche die Isophotenpunkte auf 
K\° bestimmen, die Grundrissprojectionen der Isophoten in 
diesen Punkten. 
Die weitere Ausführung der Construction der Isophoten 
ist der der Rotationsflächen zweiter Ordnung ganz analog. 
Für b = oo geht das Unduloid in das Katenoid über. 
2. Die Gleichung des in Fig. 60 dargcstelltcn Nodoids ist 
z = aF{c, (p) — bE{c, cp) 1 
r 2 = Ct 1 sin 2 (p -[- b 2 COS 2 epf ^ 
Wir erhalten demnach, wenn wir in die Gleichung für 
-(-¿ jetzt —b setzen, die Gleichung der Grundrissprojectionen 
der Isophoton des Nodoids 
+ r (a—b) L — sinv x Y(r 2 —a 2 ) {b 2 —~r 2 ) + cos v x (r 2 —ab) cos 0 8),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.