Full text: Contenant les oeuvres de l'auteur qui n'ont pas été publiées auparavant (Tome 2)

17 
Pour déterminer la constante c, soit *=10, ef on aura 
Z(lQ) = c-f-log 10 Jjj tïVô H~ TSfinJôôô etc * 
d’où l’on tire la valeur de c=0,577215664901 .. 
On obtiendra donc: 
1 . 1 
L{x) = 0,577215664901 .. + log*— JL 
etc. 
12x 2 ' 120*4 
Cette formule est très commode pour calculer la fonction L(x) lorsque x 
n’est pas trop petit. 
Pour calculer L(x) depuis x=l à*=2 on peut développer une formule 
convenable de la manière suivante : 
On a L(l-j~ w ) 
O f (0-1 
0-2 
= l + ! + i + i + ---àl’inf. 
or en développant 
i i 
21314 
1 1 1 
1 + o 2+o ¿+<0 
l+to 2+0 ¿+0 
etc. on trouvera 
à l’inf. 
Z(l + »)= <0(1+ + -4-+-++- + •••) 
<0 2 (1 + ¿-+ ^r+ TT + • • ■) 
3 3 
43 
+ G)3 ( 1 + ¿-+ 4r + -JT +• • •) 
34 
44 
etc. 
Donc en désignant 1 + -i-+ ¿-+ +... par S n , on aura 
L( 1 -j- co) = S 2 c 0 — A 3 co 2 -j- S 4 co 3 — S a oo 4 -j- ¿SgCo 6 — etc. 
ou bien L( 1 -f- co) — (S 2 — 1) co — (S 3 — l)o> 2 -}- — l)co 3 —•. .. 
—CO CO 2 -j- CO 3 ... 
or 
CO 
co 2 —j— or 
0 + 1 
, donc 
A(l + <0)= 
0 + 1 
-f- (S 2 — 1 )co — (S 3 — l)co 2 -f- (S±— l)co 3 — etc. 
Mettant — co à la place de co, il viendra: 
L( 1 — co) 
O — 1 
(S 2 — l)oo — (S 3 — l)co 2 
1 
(*S' 4 — l)co 3 —etc. 
De plus ayant L(2 — to)=L(l — co) -j- j—-, on en tirera 
L(2 — co) = 1 — (S 2 — l)co — (S 3 — l)co 2 — (S — l)co 3 — etc. 
On trouvera aussi sans peine la formule suivante: 
Z(l-f co) 
(A) 
(B) 
(C) 
o 
l+o 2(2+ 0) 
&+(V1-4M-V1- ^KOVl-iy-etc. 
Tome second. 
O
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.