Full text: Theorie und Anwendung der Determinanten

Summe (16), welche aus zwei verschiedenen Werthen von i 
und k entspringen, einander gleich. 
Beispiele. 
a 
K. 
6„„ b 
& M 
V 01 02 
a, 6... 
= aa x a. 2 — - a,6 0 , 2 - a 2 6 01 2 + 2 b 0l b 02 b l2 . 
(i 6 0 , 6 02 6 03 
boi b\2 6, 3 
Ö n .y 6]fli Q/f ^23 
CK 
7 02 12 
6. 
y 13 v 23 
= a (0,0*0, - 0,6,,*— 0,6,3*- o,6„*+ ib x . z b l3 b 23 ) 
- 6„*(a*a 3 - 6,,*) - 6 02 *(o,o, - 6, 3 2 ) - 6 03 2 (o,o 2 - 6,,*) 
+ 26 01 6„ 2 (ffl 3 6 I2 6, 3 ö, 3 ) + 26 0 ,6 03 (fl 2 6, 3 6,3623) + ^63,633(0,623 6,,6, 3 ) . 
Insbesondere ist 
0 a 
« 0 
6 c 
= 2o6c • 
habe 
a 0 c, 6, 
6 c, 0 o, 
c 6, fl, 0 
= fl 2 «,-4- 6*6, 2 + c 2 c, 2 — 2aa,66, — 2aa,cc, — 266,cc, 
= (««, 4- 66, — cc,) 2 — 4aa,66, 
= — (t^flfl, 4- /66, 4- cc,) (— t^a«, 4- K66, 4- E"cc,) 
X(t^flfl, — E66, 4- l'^cc",) (/aa, 4- K 66, — t^cc,) . 
0 114 
1 0 c 6 
1 c 0 a 
1 6 « 0 
= — (pa + /6 + j/'c) (— j/'a 4- p6 4- |^c)(JA« — j/6 4- j/c) (j/a4- ^6— c) 
= 4- 6 2 4- c 2 — 2«6 — 2ac — 26c 
= (fl 4- 6 — c) 2 — 4«6 
§. 4. Zerlegung einer Determinante nach partialen 
Determinanten. 
1. Wenn man aus dem gegebenen System von n 2 Ele 
menten
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.