9
plikator 6825. — Die Multiplikation zweier Zahlen erfolgt somit auf
der Maschine genau so, wie auf dem Papier; man bildet der Reihe
nach die Produkte von 265439 mit 5, 20, 800, 6000, deren Addition
von der Maschine selbst besorgt wird. - - Enthält der Multiplikator
eine oder mehrere Nullen, so bleiben natürlich die entsprechenden
Stellen unberücksichtigt. — Um zum Beispiel 54298 mit 10 208 zu
multipliziren, hat man, nachdem 54298 im Stellwerke eingestellt worden
ist, zunächst 8-mal die Kurbel zu drehen; dann das Lineal um zwei
Stellen, aus der 1. in die 3. Lage, zu versetzen, 2 Drehungen zu
machen, dann abermals um 2 Stellen, aus der 3. in die 5. Lage, zu
versetzen, und 1 Drehung auszuführen. Im Produkt steht das Re
sultat: 554273984; im Quotient erscheint der Multiplikator: 10208.
Da die 2. und 4. Stelle des Multiplikators Null ist, so braucht das
Lineal in die 2. und 4. Lage nicht gebracht zu werden. —
Da im Quotienten, der, wie nunmehr klar geworden sein wird,
ein einfacher Tourenzähler ist und in seinen einzelnen Stellen
stets die Umdrehungen erkennen lässt, welche bei den verschiedenen
Lagen des Lineals ausgeführt worden sind, stets der Multiplikator
erscheint, so hat man in jedem Falle eine Kontrole für die Richtig
keit der Zahl der gemachten Drehungen. Hätte man etwa im 2. Bei
spiel beim 2. Einlegen des Lineals aus Versehen 3mal, statt 2 mal,
die Kurbel gedreht, so stünde im Quotienten nicht 6825, sondern 6835,
und das erhaltene Produkt wäre nicht das verlangte. Man braucht
jedoch in solchen Fällen die Rechnung nicht zu wiederholen, sondern
hat einfach die Zuvieldrehung durch Subtraktion zu corrigiren: man
bringt das Lineal in die 2. Lage, stellt den Steuerknopf auf Subtraktion
und führt eine Drehung aus. Im Quotient steht dann der richtige
Multiplikator (6825), im Produkt das richtige Produkt. Hat man
umgekehrt zu wenig gedreht, so muss man die fehlenden Drehungen
nachholen.
Es ist bekanntlich beim Multipliziren zweier Zahlen gleichgültig,
welche Zahl man als Multiplikator wählt; die Faktoren eines Produktes
sind vertauschbar. Da nun, wie die obigen Beispiele gezeigt haben,
die Zahl der erforderlichen Drehungen gleich der Summe der Ziffern
des Multiplikators (dessen sogenannter Quersumme) ist (beim Multi
pliziren mit 6825 also gleich 6 —j— 8 —)— 2 —}— 5 = 21), so wird man,
um möglichst wenig Drehungen machen zu müssen, in der Regel
stets die Zahl mit kleinerer Quersumme als Multiplikator wählen,
und die andere im Stellwerke einstellen. —
Andere Vortheile und Kürzungen beim Multipliziren werden
später besprochen werden.