340
verbessern; sind aber diese Entfernungen entweder alle kleiner oder
alle grösser als die abgemessenen Längen, so muss man in dem
ersten Falle den Abstand der Fäden etwas grösser und in dem
zweiten Falle etwas kleiner machen, was durch Lüften oder An
ziehen der in Fig. 185 mit s bezeichneten Stellschraube geschieht.
Nach dieser Berichtigung — welche so gemacht wird, dass die Ab
lesung für einen bestimmten Standpunkt der Latte (z. B. auf dem
Pfahl Nr. 5) deren Entfernung genau entspricht — wiederholt man
die früheren Aufstellungen, Ablesungen, Reductionen und Correctionen
so lange, bis man mit der Leistung des Instruments zufrieden ist.
Zu 3. Das Verfahren, den Collimationsfehler des Reichenbach’-
schen Distanzmessers zu bestimmen, ist nur wenig von dem in §. 113
beschriebenen, zur Kippregel gehörigen, verschieden. Da man näm
lich nicht längs der optischen Axe des Fernrohrs visiren kann, so
müssen die zwei Absehlinien benützt werden, welche die beiden
Fadenkreuze gewähren: wir wollen zunächst die obere wählen,
d. h. diejenige, welche ausserhalb des Fernrohrs über der optischen
Axe liegt. Verfährt man nun mit der Messung gerade so, wie im
§. 113 angegeben; behält man ferner dieselben Bezeichnungen wie
dort für die Ablesungen (w' und w'') am Gradbogen, den wahren
Höhenwinkel (w) und den Collimationsfehler (c) bei, und bezeichnet
man weiter noch den Winkel, welchen die hier benützte obere Vi-
sirlinie mit der optischen Axe des Fernrohrs bildet, mit so ist
nicht schwer einzusehen, dass folgende zwei Gleichungen richtig sind:
w' =w + c—j (142)
w" = w Ip c -f- Ö ’
Hieraus folgt, wenn man die zweite Gleichung von der ersten abzieht,
w ( — w" = + 2c — 2 S (143)
Setzt man Ö als bekannt voraus, so lässt sich hiermit der Collima
tionsfehler c berechnen; will man aber diese Voraussetzung nicht
machen, so lässt sich Ö wegschaffen, indem man mit der unteren
Visirlinie dasselbe Verfahren durchführt wie mit der oberen. Be
zeichnen für diese Absehlinie w, und w 2 die abgelesenen Höhen-
und Tiefenwinkel, so gelten für dieselbe folgende zwei Gleichungen:
W, = W + C -f- ö )
W, = w C — () >
aus denen auf demselben Wege wie vorhin
w, — w 2 = + 2 c -f- 2 Ö
(144)