20
A. Die Flaupt-Triangulation in Schleswig-Holstein.
-
K ]
+
i [(»)] =
26 X,
-
| [a
] rn,
+ 1
[b]
+1 W
m,„ 4
1
X
[d] m iy
-
K1
+
1 [(»)] =
26 x„
+
i L"
] rn,
3
4
: M
m„
+ i M
I m„, 4
j
4
[d] m iy
-
KJ
+
1 [«J =
26 x,,,
4-
H a
] ™,
+ 1
■ w
m„
A[c]
m,f, 4
i
[d] m iy
-
(/hv ]
+
f [(«)1 =
26 x iy
+
i [«
] m ,
+ 4
ib]
m„
+ i W
m„, -
3
4
[d] m iy
[a
n, ] -
” X
[<=>(»)] =
-1 L fl ]
X,
+ X
L a l
x ff
+ t
[a] ,
X ttr + 4
[a[ x iv
[*
1 -
1
X
[*(»)] =
+ 1 [*]
X,
3
X
[¿1
X„
+ i
[6] ,
X;rt + 4
[6] X ly
[«
n f ") -
1
X
[«(»)] =
+ 1K)
X,
+ i
bl
X„
3
X
[c] x,, f 4
[c] x iy
\d
^n ] —
1
4
K»)] =
+1 [4
X,
+ i
M
X,,
+ 4
[d] x,„ - f
[d] x„
+
f [aa] m,
1 1
X
\ab]
m„
4
[ ac ]
m,„ -
| [ad]
m iy
-
\ [ab] m,
+ X
[M]
m„
l
“ X
L*e]
m,„ -
4 [bd]
m v
V
—
\ [ac] s
m,
1
X
N
m„
.?
+ X
[««]
m,„ -
4 M
m v
V
-
\ [ad] m,
1
X
[bd]
1
"" X
N1
m,„ 4
4 [dd]
m v
V
Wird in die letzten 4 dieser Gleichungen die Bedingung
£ r -f- X„ -|- X,„ + X iy = 0
eingeführt, so nehmen dieselben die einfachere Form an:
[an, ] - \ [a(n)] - - [a] x, + \ [aa\ m, - | [ab] m„ - \ [ac] m,„ - \ [ad\ m iy
[bn„ ] - | [¿>0)] = - [6] x„ - | |a 6] m, + \ [66] m, t - \ [6 c] m,„ - F [bd] m IV
[cn,„] - ± [ein)] = _ [c] x nt - ^ [ac] m, — \ [6c] m„ + \ [c c] m,„ - \ [cd] m iy
[dn lv ] - £ [d(n)] = - [d] x iy - \ [ad] m, _ \ [bd] m„ - % [c d\ in,,, + f [dd] m, y
Durch Substitution der Zahlenwerthe aus den 104 vorliegenden Gleichungen
gelangt man dann für die Bestimmung von x f . . . . , m, zu den
—
5.96342 =
26 x,
+
9,59858 =
26 x,,
—
2,17012 =
26 x m
—
1,46502 =
26 Xn
4-
9,89221 =
— 37,3628 x,
—
13,64680 =
— 40,5746 x„
+
4,49219 —
— 38,3274 X,,,
+
3,52521 =
— 39,8865 a"iv
Endgleichungen:
— 28,02210 m, + 10,14365 m„
+ 9,34070 m, - 30,43095 m„
4- 9,34070 m, + 10,14365 m n
+ 9,34070 m, + 10,14365 m,
4- 43,67107 m, — 14,85126 m t ,
— 14,85126 tn, + 50,77358 m„
— 14,10773 m, — 15,22348 m„
— 14,60710 in, — 15,86450 m, t
+ 9,58185 m,,, 4- 9,97162 mn
+ 9,58185 m,,, 9,97162 mn
— 28,74555 m, n + 9,97162 m iy
-f- 9,58185 m„, — 29,91488 m iy
— 14,10773 m,i, — 14,60710 mn
— 15,22348 m„, —- 15,86450 m ty
4- 45,51104 m,,, — 14,93908 m, y
— 14,93908 m,„ + 48,94014 m ty
Setzt man die Werthe von x, x„ x„, x lv aus den ersten 4 Gleichungen in die
4 letzten, so findet man die Gleichungen für m, m,, m„, m Jy
4- 1.32259 = 4 3,40244 m, — 0,27453 m„ — 0,33831 m,„ — 0,27757 nm
4- 1,33237 == — 0,27453 m, + 3,28421 m„ — 0,27041 in,,, — 0,30316 mn
-}- 1,29314 = — 0,33831 m, — 0,27041 m„ 4- 3,13632 m„, — 0,23960 mn
4- 1,27772 = - 0,27757 m, — 0,30316 m,, — 0,23960 m,„ 4- 3,04782 wi JV