Full text: Theorie der elliptischen Integrale und Funktionen, für die Bedürfnisse der Anwendung dargestellt (Zugabe)

Berechnung des Mantels des schiefen Kreiskogels. 
2 p 2 p' 2 — 2 p p' {r* 4- h 2 — a 3 ), 
2 p 3 p' 2 — 2 p 3 p' 2 = 0; 
r 3 4- h 3 — a 3 = p p' — 2k 3 p p', 
2p 3 p <3 + 2p p' (r 3 + h 3 — a 2 ) = 4p 2 p' 3 (l — k 2 ), 
2p 3 p' 2 — 2pp'(r 3 -f-h 3 — a 2 ) = 4p 3 p' 3 k 2 , 
so dass das Integral, d. h. der Kegelmantel: 
4rp 2 p' 2 rft 1 — k 3 4- k 2 cos*v 8t 
p~p' J o te' + e + (e' - e) cosV 1 2 Yi - k 1 «« 3 » 
n 1 — k 2 + k 2 cos 3 v 8t 
(1 4- m cosv) 3 — k 2 sin 2 t 
g' + g’ 
Weiter ist 
1 — k 2 + k 3 cos*v k 3 (1 + m cosv)* — 2k 3 (14-m cos v) + ra 3 —m 2 k 3 +k 2 
m 3 (i + m cosv)* 
8 v 
cos v) •VT — k 2 sin* v 
(1- 2 k 2 ) m 2 4-2 k 2 r 8jr 
( m ‘ — 1) [(l — k*) m 2 + k'j J + m cosv) Y1 — k 2 sm 2 T 
2 k 2 /*(1 + m cos t) 8 t 
J 1 
(in 2 —1) [(! — k 3 )m 3 4-k 2 ] J yi_k 3 «*« 2 T 
/'I 1 ±=Si^ + m>P(§.25,IV), 
(tu-— 1) 1(1 - k')m- + k 2 J J yi_k 2 s/« 3 T 
wo P für v = 0 und v = n verschwindet. 
Also 
(1 — k 2 ) m 2 4- k 2 1 8t 2k 2 /** I 8r 
J o (I -rin cos v) * y 1 _ k 2 sfw y T nt 3 J 0 1+ m cos v y i _ k» 
8 t k 2 Z* 7 * 8 t 
(1 4- m cost) Yl — k 2 sin 2 v ni*(r 
k 2 cos*v 81’ 
' ~ ly o Yl - k* sin*v 
(1 4- rn cos v) Y'i — k 2 siw 3 t ui* — I 
k 2 /* 7r cos 2 t8t 
2 /»« 8 t 
o V"l — k 2 sfn 2 T 
$(*. k) 
o VT — k 2 siw 3 t
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.