Full text: Vorlesungen über Differential- und Integralrechnung (1. Band)

Zweiter Abschnitt. Differentiation von Funktionen einer Variablen. 79' 
131 7), t 4- «'i _ tl) _ 1 
12) Dl tg ( 4 + 2 j ^ C0SiC 
tg U + 27 
13) D tg X ainx = J) e Bin.xltgx 
7 j , sinicsec 2 ic\ 
= gSinzttga: ^ cog x l tg x -\ — j 
= tg x Binx (l tg x C0BX + sec x). 
14) D arc sin jq- 
1 — X 
X 
(1 + a;) — (1 — x) 
(i + X Y 
(1 -(- x) ]/x 
15 ) D(? a ™ Bi ™ + iyi-x^ = 
]/l — X s 
w x z arc sin # 
" I “ 2 ”7 7Tz7~ ~l 
1 — £C 2 (1 — X 2 ) 3 ^ ' ]/l — X 2 l/l — iC 2 
arc sin x 
* 
(1 — ¿c 2 ) 3 /* r 
16) Z) (arc sin iß, sin x) + arc cos (a cos x)) 
+ 
]/l — « 2 sin 2 £c f/1 — a 2 cos 2 £c 
17) narctg(y^|tg f) 
' a-\-h ° 2 
]/ fl 
et — h 2 x 1 
a-\-h Se ° 2 2 2 (a -f- & cos x) 
t-v\ & 4- a cos ec 
18) D arc cos — = —■;--- • 
J a-\-h cos x -f « C osa;\2 
a h cos x) 
a (a -j- h cos x) sin x b (b -j- a cos x) sin x 
(«-)-& cos ec) 2 
Va 2 — & 2 
a -\-h cos x 
*) Der Bruch ? arc sm 7 f 8 t Her als Produkt der drei Faktoren x > 
arc sin x, 
1/1 — £C 2 
Y1 — £C 2 
behandelt worden.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.