Full text: Euclides elementa (Vol. 3)

-A -F 
CY. 
Recta minori commensurabilis minor est. 
Sit enim AB minor et rectae AB commensurabilis 
FA. dico, etiam FA minorem esse. 
nam fiant eadem; et quoniam AE, EB po 
tentia sunt incommensurabiles [prop. LXXYIJ, 
etiam FZ, ZA potentia incommensurabiles 
sunt [prop. XIII]. iam quoniam est AE:EB 
= FZ : ZA [V, 12; V, 16], erit etiam 
A E 2 : EB 2 <= FZ 2 : ZA 2 [VI, 20 coroll.]. itaque 
7 etiam componendo [Y, 18] est 
AE 2 + EB 2 : EB 2 = FZ 2 -f ZA 2 : ZA 2 . 
oro. Theon (BFYb). 17. FaF] (prius) F e corr. m. 1 F. 
sati PBY, comp. Fb. 18. avza zoig ngozsQOv V. 19. 
FZ] Z e corr. m. 1 b. 20. ztjv~\ oiu. Bb. 21. rrjv] m. 2 F. 
23. ZJ] JZ B. saziv] supra scr. m. 1 V. ■ca] corr. ex 
zo in. 1 Y. 24. rcoi'] zrjg P. ovzco Bb. 25. ZzJ] (prius) 
supra scr. m. 2 F (Z incertum est). v.a\ halXdt,'] om. P. 
Dein dei. dg zo ano zrjg BE ngog zo ano zrjg ZA, ovzcog zd 
dno zdv A E, EB nqog zd ano zcov FZ, Zz/ Y. 
Euclides, edd. Heiberg et Menge. III. 22 
quoniam est AE: EB = FZ:ZA [Y, 12; Y, 16], erit 
etiam [prop. XXI lemma] 
AE 2 : AE X EB = FZ 2 : FZ X Z A. 
uerum A E 2 , FZ 2 commensurabilia sunt, itaque etiam 
AExEB, FZxZA commensurabilia sunt [Y, 16; 
prop. XI]. siue igitur AExEB rationale est, etiam 
FZxZA rationale est [def. 4], siue AExEB me 
dium est, etiam FZxZA medium est [prop. XXIII 
coroll.]. 
Ergo FA apotome est et ordine eadem ac AB 
[prop. LXX1Y — LXXY]; quod erat demonstrandum. 
ELEMENTORUM LIBER X.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.