Full text: Leonardi Euleri Commentationes Arithmeticae Collectae (Tomus 2)

422 
L. EULERI OPERA ARITHMETICA. 1780. 
1525 . 7 
cuntur sequentes: 1, 13, —13^3’ etc * Alteri valores inventi q = 1 et /) = — pro serie q, p’ 
7 13 
q, p, etc. hos dant numeros 1, -? ^395 etc., unde patet priores valores pro q et p assumtos 
solutionem penitus exhaurire, neque adeo posterioribus ad problema solvendum opus fuisset 
Exemplum S, 
formulae 3^ 4 -i~ 
§ 13. Ad quadratum ergo redigi debet haec formula 3C 4 -+-1, cui statim tres valores satis 
facere deprehenduntur, scilicet 
C= 0, C= 1, C = 2. 
Cum igitur hic sit a = 3 et /9=1, posito C = nascetur sequens formula 
k 8.T -r- 2's-£C£c h~ 8a3 5 -i- 4cc 4 = Q, 
quae per k divisa fit 
1 —i— 2 cc —1— 6 xx —i— 2 £C 3 —i— ac 4 = □, 
quae ita repraesentata (1 -+- x -+- 3iC£c = □ dabit has substitutiones: 
1 -+- x xx = X (pp— 3 qq) et x — 2 Xpq, 
unde ista aequatio inter p et q emergit 
1 -+- 2 Xpq -+- h XXppqq = Xpp — 3 Xqq, 
1 7 
unde pro casu X = 1 et q = y statim deducitur /) = — —• Binae autem radices quadratae pro 
p et q erunt 
_ — Xq±V(A — 12/>V) ~ Xp±V {AX^p* — 3>t) 
P 4 /i/? qq — 2 ? ^ AXXpp -+- 3X. 
Ex his ergo formulis erit 
, —2 ¿«7 , —2 /?/> 
p+p — et wr r ]7+Ti' 
1 7 
Quoniam jam casum invenimus A■ = 1 et q = - , unde fit p = — — > hinc statim nostra series 
q, <7 > />, q", P > etc. formari potest, ope formularum: 
p -t- p = — et q-+-q = , 
r r 4^ — 1 7 ■* 4pp-*~3 
| y 
atque termini hujus seriei fient — > — e ^ c * unt I e cum sit x — 2pq, hinc nanciscimur istos 
7 231 3 
valores: x = —— et x = ~? unde fit C = — -; tum enim erit V(3C 4 -+- 1)=~* 
4 448 11 v ' 121 
Exemplum 3, 
formulae ~ B = Q. 
§ 14-. Quia igitur quadratum esse debet — C 4 — erit «= /9 =— ideoque a = 1 
et a — /9 = 2, oriturque haec formula biquadratica 
1 -t- 8x h- 6ctcc hh 8cc 3 -+- cc 4 = □, sive (1 -h\x h- a?a?) 2 —3 {2x) 2 = Q. 
Quamobrem statuatur
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.