Full text: [Disquisitiones arithmeticae] (1. Band)

202 
DE FORMIS SECUNDI GRADUS. 
Sol. Formae F proprie aequi valeat forma reducta 0, quae itaque per hyp. 
etiam formae F' proprie aequi valebit. Quaeratur per art. 206 transformatio pro 
pria formae F in 0, quae sit a, b, y, b; nec non transformatio propria formae 
F' in 0, quae sit a', b', y', h'. Tunc 0 transformabitur in F' per substitutio 
nem propriam ()', —b', —y', a' et hinc F in F' per substitutionem propriam 
— by', ba' — ab', y 8' — by', ba' — yb' 
Operae pretium est, aliam formulam pro hac transformatione formae F in 
F' evolvere, ad quam formam reductam 0 ipsam novisse ne opus quidem sit. 
Ponamus formam 
F esse (a, h, c), F' — [a, b’, c), 0 = [A, h, 0) 
Quoniam rationibus h — b : a vel c : — (A-J-6) in numeris minimis aequalis 
est ratio b : b, facile perspicitur ;= A- fore integrum, qui sit /; nec non 
j — ~■ / y~ 5 integrum fore qui ponatur = g. Habebitur autem 
A — aaa -f- 26ay -f- cyy adeoque fiA = aaat)-j- 26aby-f-cbyy 
sive (substitutis pro ab, S(/i — h), pro c, b<Q 
b H = aabA-{-&(2by — a^a-f-bbyy^ 
sive (propter b = — h — $g) 
ISA — 2 a (ab — by) A ~1- (ab — by) 2 */ — 2 a h 9 
Simili modo 
Quare 
bH = aaab-j-2&ayb~l-cyyb 
= aaèèf b{2a$ — by)y— byy/i 
= (aè — by) 2 / + ( a ^ — by)^ = 2y4 -j-y 
Prorsus eodem modo positis 
A — 6' a' jyt c' — A — b' , 
= v=f’ J' = = 9 
— -v — 
2 h ’ i 2 A 
Ut
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.