Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

COMMENTATIO SECUNDA. 
inter hos —\p 
simpliciter mini- 
pro modulo dato 
mo determinen- 
ngulis valoribus 
i um. Criterium 
onsistit, ut tum 
-\-hb, quoties de 
et —|— -T£-{ci(i —j— bb^j, 
so. Regulae spe- 
a, b affert, re- 
ixia sit, hic im- 
exemplum expo- 
comparata esse 
icui numerorum 
positivos ipsius 
pio non maiores 
- 1, 0, 1, 2, 3, 4. 
.... 33, atque 
dus y est + 3, 
oritur sequens 
X 
y 
— 1 
3, 4, 5 
0 
0, 1, 2, 3, 4, 5 
+ 1 
1, 2, 3, 4, 5, 6 
+ 2 
1, 2, 3, 4, 5, 6 
+ 3 
2, 3, 4, 5, 6 
+ 4 
2, 3, 4 
Simili modo pro residuis absolute minimis, i et iq alicui numerorum 
—14, —13, —12 ... . —j— 14 aequales esse debent; hinc 29x nequit esse extra 
limites —7.14 et —j— 7.14, adeoque x alicui numerorum —3,—2,—1,0,1,2,3 
aequalis esse debet. Pro x = —3 erit 2y = 4—5x = 4+15 alicui nu 
merorum 1, 2, 3 .... 29 aequalis, 5y = iq-\-2x = — 6 autem alicui horum 
— 20, —19, —18 . . . .+8: hinc prodit pro y valor unicus +1. Tractando eo 
dem modo valores reliquos ipsius x, habemus schema omnium residuorum abso 
lute minimorum : 
x 
y 
— 3 
+ 1 
— 2 
— 2, 
— 1, 
o, 
+ 1, + 2 
— 1 
— 3, 
— 2, 
-1, 0, +1, + 2 
0 
— 2, 
— 1, 
0, 
+ 1, +2 
+1 
— 2, 
— 1, 
0, 
+ 1 » +2, +3 
+ 2 
— 2, 
— 1, 
0, 
+ 4> +2, 
+ 3 
, - 1 
In applicatione methodi secundae duos casus distinguere conveniet. 
In casu priori, ubi a et b divisorem communem non habent, fiat aa-\-1jb— 1, 
sitque k residuum minimum positivum ipsius x oc b secundum modulum p. 
Hinc aequationes identicae 
a {£ a — ab) = tip — 6(oca + 66), b[fia-~ab) = — ap-\-a[aa+ 
docent, esse ak = —b, bk == ¿*(mod.^>). Statuendo itaque ut supia ax-\-hy 
15* 
P.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.