Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

>UIS QUADRATICS 
DEMONSTRATIONES ET AMPLIATIONES NOVAE. 
55 
iiiifesto habebimus omnes 
im modulum M congrui 
— 3 
habebimus 
igere licet 
7 
7 
J 
\ T 
primos, e combinatione 
mdamentale protinus de 
sit formae 4 k -j-1, nu- 
vel simul pares vel simul 
i quadraticum, vel utrum- 
- 3, erit \ [m — 1) [M— 1) 
b proin unus numerorum 
n-residuum quadraticum. 
THEOREMATIS FUNDAMENTALIS IN THEORIA RESIDUORUM QUADRATICORUM 
DEMONSTRATIO SEXTA. 
1. 
Theorema. Designante p numerum pronum [positivum imparem), n integrum 
positivum per p non divisibilem, x quantitatem indeterminatam, functio 
l + a? w +a? 2w +a? Sw + etc. -\-x np ~ n 
divisibilis erit per 
i-fxf-xx-fx^f- etc, -\-x p ~ 1 
Demonstr. Accipiatur integer positivus g ita ut fiat gn= 1 (mod. p), 
statuaturque gn — 1 -\-hp. Tunc erit 
ix 2n + x 3n -p etc. -(- x np ~ n (l — x np ) (l—x) (l—x np ){l—x gn — x-\-x hp+l ) 
i + x + xx + x 3 + etc. + x p ~* [\ — x n ){\—x p ) (l— x n ) (l—x p ) 
\—x np \ — x'J n x(l—x np ) 1 — x hp 
l—x p 1—x n 1—x n 1—x p 
adeoque manifesto functio integra. Q. E. D. 
Quaelibet itaque functio integra ipsius x per 
# m 9 # # £ jP 
visibilis erit per - 
j x np 
— divisibilis, etiam di- 
1 — x n 
2, 
Designet a radicem primitivam positivam pro modulo p, i. e. sit a integer 
positivus talis, ut residua minima positiva potestatum 1, a, aa, a 3 a p ~~ l 
secundum modulum p sine respectu ordinis cum numeris 1, 2, 3, 4 p — l 
identica fiant. Designando porro per fx functionem 
x x a -j- x rm -f - x a * -f- etc. -)- x^ * -j-1 
patet, fx—1 — x—xx — X*— etc. —x p ~ 1 divisibilem fore per 1 — x p , adeoque 
a potiori per ~~r = i + + etc - per quam itaque functio 
nem ipsa quoque fx divisibilis erit. Hinc vero sequitur, quum x exprimat quan- 
J ..... 1 x np • / 
titatem indeterminatam, esse quoque f[x 11 ) divisibilem per et prom (art. 
praec.) etiam per f—, quoties quidem n sit integer per p non divisibilis. Con 
tra, quoties n est integer per p divisibilis, singulae partes functionis f[x n ) uni-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.