Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

58 
THEOEEMATIS FUNDAMENTALIS IN DOCTEINA DE EESIDU1S QUADEATICIS 
qrj.P~ i“ -3 a p ~ 2 
rvrL sy) 
iAj IA/ 
qaP-f*- 1 
ol/ cV 
qixP-fi a 
ar —x 
iV q rj - p ~ u+ ' ^a« 
lis, nec n 
/(«-')_ 7 
Quo( 
est residui 
divisibilis, 
x 9 aP ~ 2 
vero theor( 
I. C 
per 1—x v divisibiles. Quibus quantitatibus, alternis vicibus positive et nega 
tive sumtis atque summatis, patet, per 1 — x p divisibilem esse functionem 
que 8 = 
p, atque j 
JC*—«*“'+ etc. — cfl^' + i 
atque p n 
II. 
valente signo superiori vel inferiori, prout g par sit vel impar, i. e. prout q sit 
residuum quadraticum ipsius p vel non-residuum. Statuemus itaque 
d = — y, 
siduum ipt 
— tc. — — = (1 —xP)W 
Q. E. D. 
faciendo y = —J— 1, vel y = —1, prout q est residuum quadraticum ipsius p 
vel non-residuum, patetque, W fieri functionem integram. 
Algorithr 
G. 
His ita praeparatis, e combinatione aequationum praecedentium deducimus 
qiX = epiSp**- 1 )-y)+~ • (Z{Sp^-^- 7 ) + Yii- Wi(l-x)) 
Ant< 
Disquisitio 
expedite \ 
torum seqi 
Supponamus, ex divisione functionis £, X per 
I. I 
x p ~~ 1 i “~ 3 -f- etc. -j- x -j-1 
ticum est i 
II. 
oriri quotientem U cum residuo T, sive haberi 
i x = ~ - U + T 
ita ut U, T sint functiones integrae, etiam respectu coefficientium numericorum, 
et quidem T ordinis certe inferioris, quam divisor. Erit itaque 
qT ep{Sp^-''l y) = y".(Z(V ife_1) — wi[\-x) — qU) 
mus, relai 
fiat residu 
peritur mi 
itaque aliq 
spiciendur 
vice ipse 1 
III. 
quae aequatio manifesto subsistere nequit, nisi tum membrum a laeva tum mem 
brum a dextra per se evanescat. Erit itaque gp{$p*^~~^ — y) per q divisibi- 
8 m -{-1 ve 
vel 8 m -f-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.