Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

133 
. | a6 . 
CIRCA SERIEM INFINITAM 1+ r; y ^+ ETC - 
itum sit 
er art. 7 
VI. 
0 = yF—y(l—00) F"—(y — ol—6 — i)xF"' 
tertiam, 
Hinc atque ex III, eliminando F" 
»erspici- 
ictiones 
VII. 
0 = y F— (y — cl—1 — t)x)F" — (ot-J-1) (l—x) F 
functio- 
Porro ex IV atque V, eliminando F"'" 
it aham 
mentum 
VIII. 
0 = {y +1) F" - (y+1) F""+ («+1 )xF 
xem ge- 
Hinc atque ex VII, eliminando F"", 
'ones ad 
IX. 
0 — y(y-f-l)F—(y —j— l) (y — (a-f-b-f-\)x)F"—(a+l)(^+l)®(l 
11. 
Si omnes relationes inter ternas functiones F(a, b, y), F(a-j-X, 6 + T ~l" v )» 
F(a-f-X', y-j-v'), in quibus X, |x, v, X', p, v' vel = 0 vel = +1 vel = — 1, 
exhaurire vellemus, formularum multitudo usque ad 325 ascenderet. Haud in- 
functio- utilis foret talis collectio, saltem simpliciorum ex his formulis : hoc vero loco suf 
ficiat , paucas tantummodo apposuisse, quas vel ex formulis art. 7 , vel si magis 
placet, simili modo ut duae priores ex illis in art. 8 erutae sunt, quivis nullo 
negotio sibi demonstrare poterit. 
[16] F(a,g, 7 ) — F(a,6,7 — 1) = — ®+ 1 >7+ 1 ) 
[17] F(a,-6+l, 1 )-F{a,-6,y)=jF[a+Ut+l.y+l) 
[18] F(a+l,g, T )-F(a,6, r )= yF(a+1.6+l,7+l) 
[19] F(a,6 + l, 7 + l)-F(a,g, 7 ) = y^F{a+l,g+l, 7 +2) 
rt7 ) ; [20] F{a+l,g, 7 +l)-F(a,g. 7 ) = ^i=^F(a+l,g+l, 7 +2) 
[21] F(a-l,g+l, 7 )-F(a,g, 7 ) = ( i=y^-F(a,g+l, 7 +l) 
[22] ^(a+l.g —i, 7 )_F(a,g, 7 ) = i^^yX ) -F(ct+l,g, 7 +l) 
[23] F(a-l,g+l, 7 )-F(a+l,g-l, 7 ) = fe^F(a+l,g+l-7+ 1 )
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.