Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

134 
DISQUISITIONES GENERALES 
SECTIO SECUNDA. 
Fractiones continuae. 
12. 
Designando 
per G ( a ' 6 'T.®) 
fit 
i^(a + l,6, Y+l,®) F(6, a+ 1, y + 1, x) ^ N 
" '>(»,«, T >) — - = G ( 6 > a .T.®) 
et proin, dividendo aequationem 19 per jP(a, tí-J-l,y —j— 1,o?), 
= a? £(6 + 1, a, 7+1, a?) 
0(8,6,Y.®) TÍT+' 1 ) 
sive 
[24] 
et quum perinde fiat 
6r(a,b, y,^)— «(y — 6) . 
1 - 7(7+7) a?6 -( 6 + 1 »°.r + 1 , 
*) 
G f (g+l,a,7+l,a?) = — +1) a) 1 
1 -( T + 1) J g-+- a y Jgg(tt + 1 » 6 + 1 » T + 2 ^ ) 
etc., resultabit pro G{a,t), y, a?) fractio continua 
[25] 
ubi 
,F(a, 6+1, y+1, a:) 
JP (a, g, y, #) 
¿a; 
dx 
1— etc. 
a = “frr 6 j 
YÍY+0. 
c __ ( a + 0(y+i — 8) 
(T + 2)(r + 3) 
e — ( a + 2 )(Y + 2-6) 
(y + 4) (y 4- 5) 
z, (g-f l)(Y+l-ct) 
(Y + 1 )(Y + 2) 
f J (g + 2)(Y + 2— a) 
(Y+3)(y + 4) 
/* = (^ + 3 ) (y + 3 — «) 
^ (Y + 5 ) (y + 6 ) 
etc., cuius lex progressionis obvia est. 
Porro ex aequationibus 17, 18, 21, 22 sequitur
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.