134
DISQUISITIONES GENERALES
SECTIO SECUNDA.
Fractiones continuae.
12.
Designando
per G ( a ' 6 'T.®)
fit
i^(a + l,6, Y+l,®) F(6, a+ 1, y + 1, x) ^ N
" '>(»,«, T >) — - = G ( 6 > a .T.®)
et proin, dividendo aequationem 19 per jP(a, tí-J-l,y —j— 1,o?),
= a? £(6 + 1, a, 7+1, a?)
0(8,6,Y.®) TÍT+' 1 )
sive
[24]
et quum perinde fiat
6r(a,b, y,^)— «(y — 6) .
1 - 7(7+7) a?6 -( 6 + 1 »°.r + 1 ,
*)
G f (g+l,a,7+l,a?) = — +1) a) 1
1 -( T + 1) J g-+- a y Jgg(tt + 1 » 6 + 1 » T + 2 ^ )
etc., resultabit pro G{a,t), y, a?) fractio continua
[25]
ubi
,F(a, 6+1, y+1, a:)
JP (a, g, y, #)
¿a;
dx
1— etc.
a = “frr 6 j
YÍY+0.
c __ ( a + 0(y+i — 8)
(T + 2)(r + 3)
e — ( a + 2 )(Y + 2-6)
(y + 4) (y 4- 5)
z, (g-f l)(Y+l-ct)
(Y + 1 )(Y + 2)
f J (g + 2)(Y + 2— a)
(Y+3)(y + 4)
/* = (^ + 3 ) (y + 3 — «)
^ (Y + 5 ) (y + 6 )
etc., cuius lex progressionis obvia est.
Porro ex aequationibus 17, 18, 21, 22 sequitur