Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

DETERMINATIO SERIEI NOSTRAE PER AEQUATIONEM DIFFERENTIALEM ETC. 
215 
n. T -P(a+i- r , 6+1-r. 2—r.«) 
_ n (g + 6 — T ) n (—t) n (t—i) y (Q(g — Y -t- n (8 — f + t) i+t-v i 
II(a—1)0(6—l)0(a—1)0(6 — Y ) ~ < OiO(l — f + t)\ ’ 
Hinc formula 86 etiam ita exhiberi potest: 
F{a, fi, — y, 1 — oc) 
0(« + 6 — t)0(— t) X 
— 0 (a — y)0(6 y) 
, 0(a+6—y) 0(—y)n(y— 1) y (0(a+&-|-£)n(6-M:+£) i+i+i 0(a—Y+i)0(6—y-H) i+i—.,) 
“T"n(a-1)0(6—l)0(a-Y)0(6—y) <n(*+<+l)O(Y+A+0 0(i-Y+i)n< * > 
Haecce expressio protinus ostendit, singulas differentias, quae sunt sub signo 2, 
fieri =0, si supponatur y = —k, sed quum hic simul fiat II(y — 1) quan 
titas infinite magna, productum finitum evadere posse patet. Cuius valorem ut 
per quantitates finitas exprimamus, statuamus primo y + k = u>, unde fit 
n (y — 1 )-y-(y-H)(y + 2 ) (y-M — l)u> = 11(0 
sive 
Hir— l) = — 
Rei summa vertitur itaque in eo, ut videamus, quid fiat 
j_ In(a — Y + g-f m)0(6— Y~H + m) l+i-Y+tu OQ* —Y~H) n ( g —Y + *) \+t- T ) 
tu ( 0 {t — Y + 1 + tu) 0 (i + tu) 0(£ — Y + iJOi ' 
si «) in infinitum decrescat. Per principia nota autem hinc resultat 
_ 
dY 
si brevitatis caussa statuimus 
n ( a — Y + <) n ( g —t + 0 r i+i—y TT 
n {t—Y+i) 0(i—k—y) 
solamque y tamquam variabilem spectamus. Sed hinc fit 
^ = —^(a —y + i) ——y + i) + W(i —y + l) + W(i—£ —?) — lo S«* 
Hinc colligitur pro y = — k
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.