Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

218 
NACHLASS. 
Quibus valoribus substitutis transit aequatio 80 in hanc 
0 = «bP+(l—-^fy-f-fa + b — 1 — — y){y — yy)^. 
Ut vero obtineamus aequationem ipsi 80 similem, statuamus P = (l—y)^', unde 
= (l 1 ^— 2(»(1—^’^+(1-yf ~ 
Quibus substitutis fit post divisionem per (1—yY 
0 = P'jab — jx(y4-(a+€—1 — i)y-\-y[w-~ fx)( 
+ ^f“fT + ( a +^ —! — t)^ — 2 P^K 1 — V) 
+ ^\y—yy\^—y) 
Determinemus |x ita, ut multiplicator ipsius P' per 1—y divisibilis evadat, 
quod fiet statuendo vel (x = a vel p == b. Valor prior mutat aequationem prae 
cedentem in hanc 
0 = a(g—y)P'+(T—(T+“H-1 — %)^+(y— S9)^pr 
0 = a(y — $)P'— (y — (y—6+<*+lb0^| — (y— 
cui ita satisfaciendum est, ut fiat pro y = 0, P'= 1 atque Hinc 
autem deducitur P'=F{a, 7— 6, 7,^) adeoque habetur 
[91] F{a, b, 7, a?) = (1—y) a F[a, T -b, T> y) = (1—*T*P( a , 7—6, 7, - 
Si pro p valorem alterum b adoptavissemus, prodiisset prorsus simili modo 
[92] F[a, b, 7, ae) = (1 — #)~ 8 P(b, 7 —a, 7, — 
quae formula quoque e praecedenti per solam permutationem elementorum a, 6 
sponte sequitur. Adiumento formulae modo inventae valores serierum nostrarum 
pro valoribus negativis elementi quarti semper ad valores similium serierum pro 
valoribus positivis elementi quarti interque 0 et 1 sitis reducitur, quum fiat 
F(a, b, 7, — a?) = (1 + a?) a F{a, 7 — b, 7, ~ c )
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.