Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

440 
NACHLASS, 
folglich 
= i+»+•*+•*+«••+ etc. 
Wir bezeichnen 
[4-] 
1 — x.\ — xx.\ — x s etc. mit \x\ 
so ist: 
. i i 3 . 6 i i. 1 — xx. \—a; 4 .l— x 6 . . . 
etc. = 3— g- = 
1111 1 — x . 1—£ s .l—X* . . . 
[xx] 2 
KT 
1 — 1x-\- 2 x — 2 <ar -j- etc. = 
\-\-xA-\-xx. 1-j-o? 3 . l-f-# 4 .l-j-# 5 ... 1 — x 2 . 1 — x*. 1—o? 16 
1 X . 1 XX . 1 X 3 . . . [x] z 
1 + x . 1 + XX . l-f-« 3 . . . 
l-H2a?+2a? 4 -f2a?°+etc. = xx - i + x 
[xx] 
[xx] s 
\-\-xx. 1 X 3 . 
2, 
;-*] = 
f>№ 4 ]* 
(1-f- <37<3?) (l—|-<2? 3 ) 2 (l ¿i? 4 ) (1—1—<27 5 ) 2 . . . 
[xx] 3 
Mt* 4 ] 
(l + ^)(l + a? 3 y)(lH-.3> 5 y) . . . (lH~)(l + £)(l + £) • . • 
— [¿]i 1 + <2? (^+7)+ <a?4 (^+^)+ a?9 (y+p)+ •} 
etc.+aK“ + ^ u,lu + ■3?( tu+1 ) 2 -f- etc. = [xx]- 
r , v .. 1 + # zt0+8 . 1 + x* u * 1 . 1 + X zw ~ l . 1 +x™- 3 
£-01(0 x itu ~ l X i(JJ ~ 3 
[xf = 1— 307H-5^ 3 — 7x g -\- 9^ 10 ~ etc. 
folgt leicht aus 
! (y—j) 0—^)*°+ (y 5 —£)*“- • • 11 (y+ j) *+(/+7,)*”+ (y 5 +p) ® 2ä +.. 
= ¡1 — 2»»+2* 32 — ..j |to — (/ —~)« ,s + etc. 
wenn man y = l-j-to setzt und daraus die Bedingungsgleichungen bildet.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.