Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

458 
NACHLASS. 
oder 
{pc,ay).[oo,^) = | (ff ff, oc a). ipcoc,yy]-\-ocay (ff ff, aaxx),{xx,ococyy)j 
(Man kann auch leicht die Reihe, wodurch P multiplicirt ist, = 0 machen, 
durch y = ix) 
71. 
(*,*)+(«. 7)^ = (®V)|fg 
(x,am) = |(x,~), . {«,a®«) = -4»,a) 
Den Satz 7 0 kann man auch so enonciren 
7 2. (ff, a). (ff, €) = ^ j (ff ff, a 6). (ff ff, j) -f ff a (ff ff, a ß ff ff). (ff ff, j 
Hieraus folgt 
(»•£) • (®-1) = f(«*- ff) • (*». |) + “(**. «6)• (»»,^) j 
hieraus ferner 
73. (», a). («, S) + (®. 7) • (». |) V's = pSp • V« 6 ) • (®*. Vt) 
Nun ist 
14-2« -f 2 a: 4 + . . . 
1+ 2z s + 2 a: 20 + . . . 
(¿a; 2 , ix 2 ). {ix 2 , —ix 2 ) 
{ix 2 , —ix 2 ).{ix T , ix 2 ) 
(— x s , xx) (— x s , — x) 4- x (—x 5 , —x 3 ){—x 6 , x * 1 ) 
(— x s , x x) (— x s , — x) — x (— x s , — x s ) (— x 5 , x 4 ) 
Woraus der erste zu beweisende Satz von selbst folgt. Ebenso ist 
14~ 2 a; -}-2 #* + •«• 1 — ex. 1 — esa.l — e 3 x. 1— e'x. \ + txx. \ + ztxx. l + £ 3 xx. V-\-e*xx. . . 
1 + 2 x*-\- 2 a: 20 -)- ... l + ea:.l-)-eea;. 1-)- e 3 a:. 1 -f e*x. 1— exx. I — eexx. i— e 3 xx. 1— e 2 xx 777 
1—e 4 .l — e 3 {ix 2 , iex 2 ) .{ix 2 , ieex 2 ) 
i + e •!+£ {ix 2 , —iex 2 ). (ix*, ieex 2 .) 
££—£ 3 .£ —£ 4 (— X, —£ 3 X). (— X, e) — ex{—X, £ 3 X x) (— X, — £ x) 
££ + £ 3 .£ +£ 4 ‘ (— X, — e 3 x) .{—X, t) + ZX{—X, e 3 XX){—X, — £xj 
<— £ + ££ -)-£ 3 — £ 4 (a?, £ 3 X) . {x, £) + £ 3 {x, — £ 3 ) {x, £ x) 
4- £ 4-ee + £ 3 + e 4 ' {x, e 3 x). [x, — e)— £ 3 {x, — E 3 )(a:, ex) 
Woraus der zweite zu beweisende Satz von selbst folgt.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.