Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

466 
NACHLASS. 
ferner indem man y — 1 setzt 
7. Px = ( 1 —{— «2?) ^ (1—c^? <2?) (1 —¿T 3 ) a (1 — X^) (1 —J - <37 5 ) 2 (1 X 6 ) . . . 
8. Qx = (1—xf[l — xx)[\—<z? 3 ) 2 (l—<2? 4 )(1 — # 5 ) 2 (l— X 6 ) . . . 
9. Rx — 2x*{l-+-xx) 2 {i — xx) (1 —{—c*? 4 ) a (1—o? 4 )(1 —1—c*? 6 ) 2 (l—X 6 ) . . 
Substituirt man hier \-\-x = 1+<X’ 3 = u. s.w. so verwandeln diese 
Ausdrücke sich in folgende 
10. 
11. 
12. 
Px — 
Qx = 
(.Fxx)* 
(Fxf{Fx*f 
{Fxf 
F xx 
{Fx*y 
F xx 
hieraus ergibt sich ferner 
13. Px.Qx = {Qxxf 
14. Px.Bx = 4>-{R\/x)~ oder was dasselbe ist 
- Pxx .Rxx — \[Rxf, 
Qxx[Rx) z — \x*'. [Fx A ) 3 also 
15. Fx = __ ^{QxYRjx*) 
4^ 2X* 2/ 
ferner 
!6. Px~\~ Qx — 2P(<r 4 ) 
17. .P# Q# =r 2R[x A ) 
Also durch Multiplication nach 14 
18. {Px) 2 — {Qx) 2 = 2 {Rxxf 
Bedeutet ferner i die imaginaire Grösse \j—1, so wird 
19- Px-\-i Qx = (l + »‘) Q[ix) 
20. Px — i Qx = (1 — i)P[ix) 
Also durch Multiplication
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.