Full text: [Mathematische Physik] Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum (5. Band)

SPHAEEOIDICORUM ELLIPTICORUM HOMOGENEORUM ETC. 
17 
3 
Facile perspicietur, totam sphaeroidis superficiem sic exhauriri, si p extendatur 
a 0 usque ad 180°, q vero a 0 usque ad 360°. Porro habebimus 
X == — A sin p, X' = 0 
jx = B cosp. cos q, ¡i = —i?sin^.sing r 
^ = C cosp. sin q, V—Csinp.cosq 
¡xv'—v [x' = B C cosp . sinj? — AB Csmp .-^2 
vX'—Xv' = ACsinjP.cosg' == ABCsmp.p^ 
X[x'—(xX' = ABsinp 2 . sin <7 = AB Csinp. — 
• AA 
y 
'BB 
Hinc quoniam sin^? intra limites, quos hic consideramus, ubique fit quan 
titas positiva, statuere oportet 
ds = dp .dq.ABC. 4». sinp 
Applicando has formulas ad theorema secundum, fit corporis volumen seu 
(statuendo densitatem = 1) massa 
= ffidp.dq .AB C. cosp 2 . sinp 
sive integrando primo secundum q 
— 2%fdp. ABC. cosp 2 . sinp — %tzAB Cfdp. (sinp-J-sin 3p) 
quod integrale a p = 0 usque ad p = 180° est extendendum. Hinc provenit 
ABC, uti aliunde constat. 
13. 
Ad determinandam attractionem, quam sphaerois exercet in punctum quod 
cunque , si attractio cuiusvis elementi quadrato distantiae a puncto attracto reci 
proce proportionalis supponitur, habemus fr = ^, Fr ——y, 0r = r. Sit 
attractio sphaeroidis integri secundum directionem axi coordinatarum x paralle 
lam atque oppositam ~ X, statuaturque X — ABCt. Erit itaque, per theo 
rema tertium, 
B C cosjj. sinj> 
r 
adeoque
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.