Full text: [Mathematische Physik] Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum (5. Band)

18 
THEORIA ATTRACTIONIS CORPORUM 
[1] 
12] 
[3] 
ff 
dp . dj . cosp . sin^i 
Ar 
CC 
Perinde obtinemus, per theorema sextum 
£ rpdp.dq.smp , ^,{a — x)x , [h — y)y , (c— z)z. 
? — ./,/ ^ -.[a — I liW 
Denique theorema quartum nobis suppeditat 
l dp . d q, sxo.p Aa— x)x . (b — y)y 
ff- 
0 
AA 1 
vel = — 
BB 
4 Tt 
ABC 
Í£=íl?l = 0 
CC ! 
prout punctum M iacet vel extra corpus, vel intra corpus. 
lam quantitates A, B, C tamquam valores particulares trium variabilium 
ce, b, y consideramus, ita comparatarum, ut a a— bí?, ota— yy sint constan 
tes. Ita £ spectari poterit tamquam functio variabilium a, b, y seu potius unius 
ex ipsis: variationes simultaneas quantitatum £, a, fi, y per characteristicam h 
distinguemus. Facile concluditur ex aequatione [1], crescentibus a, 6, y in 
infinitum, $ ultra omnes limites decrescere, quum manifesto vel valor minimus 
ipsius r ultra omnes limites crescat. Statuere itaque oportet $ = 0 pro a = oo. 
Differentiando aequationem [I] ita exhibitam 
j'j'àp. dq . cos p .sinp 
secundum characteristicam h, prodit 
a85+58a = - ff 
Sed habemus 
r h r = — [a — oc) h oo — [h —y) hy — (c — z) h z 
= — [a — oc) cosp. ha— (b—y) sinjp. cos</. hfi— (c—z) sin p sin q. dy 
= — (a—x)x.^ — (b— — {c — *)s.Ü 
- _ a 8a.(í^í+^=|^+fe^) 
' aa 1 6o 1 YT ' 
(propter aha—= a£a—y£y = o): hinc fit 
a85 + ei$a = + + 
Hinc subtrahendo aequationem [2], in ()a multiplicatam, postquam 
A, B, C in a, 6, y mutatae sunt, fit
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.