[ZUR THEORIE DER POTENZRESTE.]
[QUADRATISCHE RESTE.]
CO
[ÜBER EINIGE SUMMEN.]
[*•]
[Aus Scheda Ae, Julius 1800, S. 28.]
Theorema demonstrandum.
n
r
R
N
numerus impar
radix aequationis x n — 1 = 0
l residuum ipsius n, <in,
indefinite .
' non residuum ad n primum.
Productum ex
evolvi in
(r - O (r* - r-*) (r» - O • • • K' 2 - r”' 2 )
Demonstratum iam est illud productum evolvi vel in vel in
2 yjN —. ^7’J2.