×

You are using an outdated browser that does not fully support the intranda viewer.
As a result, some pages may not be displayed correctly.

We recommend you use one of the following browsers:

Full text

Title
Mesures physiques et signatures en télédétection

600
Liang, S. and A. H. Strahler, 1993a. Calculation of the angular radiance distribution for a coupled atmosphere
and canopy. IEEE Trans. Geosci. Remote Sens., 31:491-502.
Liang, S. and A. H. Strahler, 1993b. An analytic BRDF model of canopy radiative transfer and its inversion
IEEE Trans. Geosci. Remote Sens., in press.
Myneni, R. B., 1991. Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies.
Agricultural and Forest Meteorology, 55:323-344.
Myneni, R. B. and G. Asrar, 1991. Photon interaction cross sections for aggregations of finite-dimensional
leaves. Remote Sensing of Environment, 37:219-224.
Myneni, R. B. and G. Asrar, 1993. Radiative transfer in three-dimensional atmosphere-vegetation media. J.
Quant. Spectrosc. Radiat. Transfer, 49:585-598.
Myneni, R. B. and B. D. Ganapol, 1991. A simplified formulation of photon transport in leaf canopies with
scatterers of finite dimensions. J. Quant. Spectrosc. Radiat. Transfer, 46:135-140.
Myneni, R. B., G. Asrar and S. A. W. Gerstl, 1990. Radiative transfer in three dimensional leaf canopies.
Transport Theory and Statistical Physics, 19:205-250.
Myneni, R. B., A. L. Marshak and Y. V. Knyazikhin, 1991. Transport theory for a leaf canopy of finite-dimen
sional scattering centers. J. Quant. Spectrosc. Radiat. Transfer, 46:259-280.
Myneni, R. B„ G. Asrar and F. G. Hall, 1992a. A three-dimensional radiative transfer method for optical
remote sensing of vegetated land surfaces. Remote Sensing of Environment, 41:105-121.
Myneni, R. B„ B. D. Ganapol and G. Asrar, 1992b. Remote sensing of vegetation canopy photosynthetic and
stomatal conductance efficiencies. Remote Sens. Environ., 42:217-238.
Myneni, R. B., G. Asrar, D. Tanre, and B. J. Choudhury, 1992c. Remote sensing of solar radiation absorbed
and reflected by vegetated land surfaces. IEEE Trans. Geosci. Remote Sens., 30:302-314.
Myneni, R. B., I. Impens and G. Asrar, 1993. Simulation of space measurements of vegetation canopy bidirec
tional reflectance factors. Remote Sens. Rev., 7:19-41.
Nicodemus, F. E„ J. C. Richmond, J. J. Hsia, W. I. Ginsberg and T. Limperis, 1977. Geometrical Considera
tions and Nomenclature for Reflectance. National Bureau of Standards Monograph 160, Institute for Basic
Standards, Washington, D. C.
Nilson, T. and A. Kuusk, 1989. A reflectance model for the homogeneous plant canopy and its inversion.
Remote Sens. Environ., 27:157-167.
Pinty, B., M. M. Verstraete and R. E. Dickinson, 1990. A physical model of the bidirectional reflectance of
vegetation canopies. 2. Inversion and validation. J. Geophys. Res., 95:11,767-11,775
Rahman, H., M. M. Verstraete and B. Pinty, 1993a. Coupled surface-atmosphere reflectance (CSAR) model.
1. Model description and inversion on synthetic data. J. Geophys. Res., 98:20,779-20,789.
Rahman, H„ B. Pinty and M. M. Verstraete, 1993b. Coupled surface-atmosphere reflectance (CSAR) model.
2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data. J.
Geophys. Res., 98:20,791-20,801.
Ranson, K. J., L. L. Biehl and C. S. T. Daughtry, 1984. Soybean Canopy Reflectance Modeling Data Sets.
Technical Rept. 071584, Laboratory for the Application of Remote Sensing (LARS), Purdue University.
West Lafayette, Indiana, USA, 46 pp.
Roujean, J.-L., M. Leroy and P.-Y. Deschamps, 1992. A bidirectional reflectance model of the earth’s surface
for the correction of remote sensing data. J. Geophys. Res., D18:20,455-20,468.
Running, S. R., C. Justice, D. Hall, A. Huete, Y. Kaufman, J. Muller, A. Strahler, V. Vanderbilt, Z. Wan, P
Teillet and D. Carneggie, 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS.
Int. J. Remote Sens., in press.
Schaaf, C. B. and A. H. Strahler, 1994. Validation of bidirectional and hemispherical reflectances from a geo
metric-optical model using ASAS imagery and pyranometer measurements of a spruce forest. Remote Sens.
Environ., in press.
Strahler, A. H., X. Li, S. Liang, J.-P. Muller, M. J. Barnsley and P. Lewis, 1994. MODIS BRDF/Albedo Prod
uct. Algorithm Technical Basis Document. NASA-GSFC Report, in preparation.
Suits, G. H., 1972. The calculation of the directional reflectance of a vegetation canopy. Remote Sens, of
Environ., 2:117-125.
Tanre, D., M. Herman and P.-Y. Deschamps, 1983. Influence of the atmosphere on space measurements of
directional properties. Appl. Opt., 22:733-741.
Verstraete, M., B. Pinty and R. E. Dickinson, 1990. A physical model of the bidirectional reflectance of vege
tation canopies. 1. Theory. J. Geophys. Res., 95-755-765.
Walthall, C. L„ J. M. Norman, J. M. Welles, G. Campbell and B. L. Blad, 1985. Simple equation to approxi
mate the bidirectional reflectance from vegetation canopies and bare soil surfaces. Appl. Optics., 24:383-387.
Zibordi, G. and K. J. Voss, 1989. Geometrical and spectral distribution of sky radiance: Comparison between
simulations and field measurements. Remote Sens. Environ., 27:343-358.
DETI
PARCEI
Rési
sur la sensi
dans le visi
proches de
labourée ai
directe sur
test couvre
pyrénéens,
période, 1'
données s<
systématiqi
analyse stai
L'analyse (
ainsi les re
des bandes
l'autre moi
des sols ni
la règle i<
dégrada tioi
d'entrée p<
organique
Abs
susceptibil
spectral ba
infra-red I
influence c
area cover
are extraci
déterminât
relations ii
évaluation
prédiction
mapping s
simulation
M(
Degradatu