Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Technical Commission VII (B7)

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Technical Commission VII (B7)

Multivolume work

Persistent identifier:
1663813779
Title:
XXII ISPRS Congress 2012
Sub title:
Melbourne, Australia, 25 August-1 September 2012
Year of publication:
2013
Place of publication:
Red Hook, NY
Publisher of the original:
Curran Associates, Inc.
Identifier (digital):
1663813779
Language:
English
Additional Notes:
Kongress-Thema: Imaging a sustainable future
Corporations:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Adapter:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Founder of work:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Other corporate:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Document type:
Multivolume work

Volume

Persistent identifier:
1663821976
Title:
Technical Commission VII
Scope:
546 Seiten
Year of publication:
2013
Place of publication:
Red Hook, NY
Publisher of the original:
Curran Associates, Inc.
Identifier (digital):
1663821976
Illustration:
Illustrationen, Diagramme
Signature of the source:
ZS 312(39,B7)
Language:
English
Additional Notes:
Erscheinungsdatum des Originals ist ermittelt.
Literaturangaben
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Corporations:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Adapter:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Founder of work:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Other corporate:
International Society for Photogrammetry and Remote Sensing, Congress, 22., 2012, Melbourne
International Society for Photogrammetry and Remote Sensing
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2019
Document type:
Volume
Collection:
Earth sciences

Chapter

Title:
[VII/3: INFORMATION EXTRACTION FROM HYPERSPECTRAL DATA]
Document type:
Multivolume work
Structure type:
Chapter

Chapter

Title:
Robust Metric based Anomaly Detection in Kernel Feature Space Bo Du, Liangpei Zhang, Huang Xin
Document type:
Multivolume work
Structure type:
Chapter

Contents

Table of contents

  • XXII ISPRS Congress 2012
  • Technical Commission VII (B7)
  • Cover
  • Title page
  • TABLE OF CONTENTS
  • International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Volume XXXIX, Part B7, Commission VII - elSSN 2194-9034
  • [VII/1: PHYSICAL MODELLING AND SIGNATURES IN REMOTE SENSING]
  • [VII/2: SAR INTERFEROMETRY]
  • [VII/3: INFORMATION EXTRACTION FROM HYPERSPECTRAL DATA]
  • [VII/4: METHODS FOR LAND COVER CLASSIFICATION]
  • [VII/5: METHODS FOR CHANGE DETECTION AND PROCESS MODELLING]
  • [VII/6: REMOTE SENSING DATA FUSION]
  • [VII/7: THEORY AND EXPERIMENTS IN RADAR AND LIDAR]
  • [VII/3, VII/6, III/2, V/3: INTEGRATION OF HYPERSPECTRAL AND LIDAR DATA]
  • [VII/7, III/2, V/1, V/3, ICWG V/I: LOW-COST UAVS (UVSS) AND MOBILE MAPPING SYSTEMS]
  • [VII/7, III/2, V/3: WAVEFORM LIDAR FOR REMOTE SENSING]
  • [ADDITIONAL PAPERS]
  • SAR POLARIMETRIC SIGNATURES FOR URBAN TARGETS - POLARIMETRIC SIGNATURE CALCULATION AND VISUALIZATION Professor Anjana Vyas, Ms. Bindi Sashtri
  • THE BENEFITS OF TERRESTRIAL LASER SCANNING AND HYPERSPECTRAL DATA FUSION PRODUCTS S. J. Buckley, T. H. Kurz, D. Schneider
  • AUTHOR INDEX
  • Cover

Full text

  
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
    
    
XXII ISPRS Congress, 25 August — 01 September 2012, Melbourne, Australia 
Robust Metric based Anomaly Detection in Kernel Feature Space 
Bo Du'*, Liangpei Zhang”, Huang Xin? 
1 School of Computer Science, Wuhan University 
2 The State Key Laboratory of Information Engineering in 
Surveying, Mapping, and Remote Sensing 
Wuhan University, P.R. China. 
Abstract: This thesis analyzes the anomalous measurement metric in high dimension feature 
space, where it is supposed the Gaussian assumption for state-of-art mahanlanobis algorithms is 
reasonable. The realization of the detector in high dimension feature space is by kernel trick. 
Besides, the masking and swamping effect is further inhibited by an iterative approach in the 
feature space. The proposed robust metric based anomaly detection presents promising 
performance in hyperspectral remote sensing images: the separability between anomalies and 
background is enlarged; background statistics is more concentrated, and immune to the 
contamination by anomalies. 
Keywords: anomaly detection, hyperspectral images, Manhanlobis distance 
Introduction 
Anomaly targets in hyperspectal images (HSI) refer to those deviating obviously from the other 
background pixels, especially by means of the spectral feature [1]. Typical ones are the man-made 
objects in nature scene, such as the vehicles in a grass field. State-of-arts methods mainly evaluate 
it by exploiting the distance of an observing pixel to the background statistics center. So the key is 
the background statistics, or the anomalous metric. RX and its variants take use of a Manhanlobis 
distance from background statistics [2]. In spite of their effectiveness, they are proved to be 
susceptible to the masking and swamping effect, due to the contaminated background statistics [3]. 
Multivariate outlier detection methods, focusing to alleviate this effect, figure out a more robust 
metric by eliminating the probable background pixels or a contracting iteration procedure to 
obtain a new covariance matrix [3, 4]. Traditional ways include iterative exclusion algorithm, with
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Volume

METS METS (entire work) MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Volume

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Technical Commission VII. Curran Associates, Inc., 2013.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many letters is "Goobi"?:

I hereby confirm the use of my personal data within the context of the enquiry made.