Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Remote sensing for resources development and environmental management (Volume 1)

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Remote sensing for resources development and environmental management (Volume 1)

Multivolume work

Persistent identifier:
856342815
Title:
Remote sensing for resources development and environmental management
Sub title:
proceedings of the 7th international Symposium, Enschede, 25 - 29 August 1986
Year of publication:
1986
Place of publication:
Rotterdam
Boston
Publisher of the original:
A. A. Balkema
Identifier (digital):
856342815
Language:
English
Additional Notes:
Volume 1-3 erschienen von 1986-1988
Editor:
Damen, M. C. J.
Document type:
Multivolume work

Volume

Persistent identifier:
856343064
Title:
Remote sensing for resources development and environmental management
Sub title:
proceedings of the 7th international Symposium, Enschede, 25 - 29 August 1986
Scope:
XV, 547 Seiten
Year of publication:
1986
Place of publication:
Rotterdam
Boston
Publisher of the original:
A. A. Balkema
Identifier (digital):
856343064
Illustration:
Illustrationen, Diagramme
Signature of the source:
ZS 312(26,7,1)
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Editor:
Damen, M. C. J.
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Volume
Collection:
Earth sciences

Chapter

Title:
4 Renewable resources in rural areas: Vegetation, forestry, agriculture, soil survey, land and water use. Chairman: J. Besenicar, Liaisons: M. Molenaar, Th. A. de Boer
Document type:
Multivolume work
Structure type:
Chapter

Chapter

Title:
Landscape methods of air-space data interpretation. D. M. Kirejev
Document type:
Multivolume work
Structure type:
Chapter

Contents

Table of contents

  • Remote sensing for resources development and environmental management
  • Remote sensing for resources development and environmental management (Volume 1)
  • Cover
  • Title page
  • Title page
  • Title page
  • Preface
  • Organization of the Symposium
  • Working Groups
  • Table of contents
  • 1 Visible and infrared data. Chairman: F. Quiel, Liaison: N J. Mulder
  • 2 Microwave data. Chairman: N. Lannelongue, Liaison: L. Krul
  • 3 Spectral signatures of objects. Chairman: G. Guyot, Liaison: N. J. J. Bunnik
  • 4 Renewable resources in rural areas: Vegetation, forestry, agriculture, soil survey, land and water use. Chairman: J. Besenicar, Liaisons: M. Molenaar, Th. A. de Boer
  • Remote sensing in the evaluation of natural resources: Forestry in Italy. Eraldo Amadesi & Rodolfo Zecchi, Stefano Bizzi & Roberto Medri, Gilmo Vianello
  • Visual interpretation of MSS-FCC manual cartographic integration of data. E. Amamoo-Otchere
  • Optimal Thematic Mapper bands and transformations for discerning metal stress in coniferous tree canopies. C. Banninger
  • Land use along the Tana River, Kenya - A study with small format aerial photography and microlight aircraft. R. Beck, S. W. Taiti, D. C. P. Thalen
  • The use of multitemporal Landsat data for improving crop mapping accuracy. Alan S. Belward & John C. Taylor
  • Aerial photography photointerpretation system. J. Besenicar, A. Bilc
  • Inventory of decline and mortality in spruce-fir forests of the eastern U.S. with CIR photos. W. M. Ciesla, C. W. Dull, L. R. McCreery & M. E. Mielke
  • Field experience with different types of remote-sensing data in a small-scale soil and land resource survey in southern Tanzania. T. Christiansen
  • A remote sensing aided inventory of fuelwood volumes in the Sahel region of west Africa: A case study of five urban zones in the Republic of Niger. Steven J. Daus & Mamane Guero, Lawally Ada
  • Development of a regional mapping system for the sahelian region of west Africa using medium scale aerial photography. Steven J. Daus, Mamane Guero, Francois Sesso Codjo, Cecilia Polansky & Joseph Tabor
  • A preliminary study on NOAA images for non-destructive estimation of pasture biomass in semi-arid regions of China. Ding Zhi, Tong Qing-xi, Zheng Lan-fen & Wang Er-he, Xiao Qiang-Uang, Chen Wei-ying & Zhou Ci-song
  • The application of remote sensing technology to natural resource investigation in semi-arid and arid regions. Ding Zhi
  • Use of remote sensing for regional mapping of soil organisation data Application in Brittany (France) and French Guiana. M. Dosso, F. Seyler
  • The use of SPOT simulation data in forestry mapping. S. J. Dury, W. G. Collins & P. D. Hedges
  • Spruce budworm infestation detection using an airborne pushbroom scanner and Thematic Mapper data. H. Epp, R. Reed
  • Land use from aerial photographs: A case study in the Nigerian Savannah. N. J. Field, W. G. Collins
  • The use of aerial photography for assessing soil disturbance caused by logging. J. G. Firth
  • An integrated study of the Nairobi area - Land-cover map based on FCC 1:1M. F. Grootenhuis & H. Weeda, K. Kalambo
  • Explorations of the enhanced FCC 1:100.000 for development planning Land-use identification in the Nairobi area. F. Grootenhuis & H. Weeda, K. Kalambo
  • Contribution of remote sensing to food security and early warning systems in drought affected countries in Africa. Abdishakour A. Gulaid
  • Double sampling for rice in Bangladesh using Landsat MSS data. Barry N. Haack
  • Studies on human interference in the Dhaka Sal (Shorea robusta) forest using remote sensing techniques. Md. Jinnahtul Islam
  • Experiences in application of multispectral scanner-data for forest damage inventory. A. Kadro & S. Kuntz
  • Landscape methods of air-space data interpretation. D. M. Kirejev
  • Remote sensing in evaluating land use, land cover and land capability of a part of Cuddapan District, Andhra Preadesh, India. S. V. B. Krishna Bhagavan & K. L. V. Ramana Rao
  • Farm development using aerial photointerpretation in Ruvu River Valley, Ragamoyo, Tanzania, East Africa. B. P. Mdamu & M. A. Pazi
  • Application of multispectral scanning remote sensing in agricultural water management problems. G. J. A. Nieuwenhuis, J. M. M. Bouwmans
  • Mangrove mapping and monitoring. John B. Rehder, Samuel G. Patterson
  • Photo-interpretation of wetland vegetation in the Lesser Antilles. B. Rollet
  • Global vegetation monitoring using NOAA GAC data. H. Shimoda, K. Fukue, T. Hosomura & T. Sakata
  • National land use and land cover mapping: The use of low level sample photography. R. Sinange Kimanga & J. Lumasia Agatsiva
  • Tropical forest cover classification using Landsat data in north-eastern India. Ashbindu Singh
  • Classification of the Riverina Forests of south east Australia using co-registered Landsat MSS and SIR-B radar data. A. K. Skidmore, P. W. Woodgate & J. A. Richards
  • Remote sensing methods of monitoring the anthropogenic activities in the forest. V. I. Sukhikh
  • Comparison of SPOT-simulated and Landsat 5 TM imagery in vegetation mapping. H. Tommervik
  • Multi-temporal Landsat for land unit mapping on project scale of the Sudd-floodplain, Southern Sudan. Y. A. Yath, H. A. M. J. van Gils
  • Assessment of TM thermal infrared band contribution in land cover/land use multispectral classification. José A. Valdes Altamira, Marion F. Baumgardner, Carlos R. Valenzuela
  • An efficient classification scheme for verifying lack fidelity of existing county level findings to cultivated land cover areas. Yang Kai, Lin Kaiyu, Chen Jun & Lu Jian
  • The application of remote sensing in Song-nen plain of Heilongjiang province, China. Zhang Xiu-yin, Jin Jing, Cui Da
  • Cover

Full text

473 
Symposium on Remote Sensing for Resources Development and Environmental Management / Enschede / August 1986 
amaged fo- 
classify 
damaged fo- 
airbome 
Hits data, 
be sepera- 
s, and these 
nificant 
ss S2 (26 to 
f this class 
boundaries, 
to the 
results 
d in the 
mple texture, 
nimize the 
to investi- 
shneider and 
ointerpre- 
ity of Frei- 
the DFVLR 
ae scanner 
atures of 
tands using 
sburg, 27. - 
sines Ver 
mut tispek- 
. Maerz 1985, 
sctance Pro- 
sctral Data, 
ss of Objects 
Dec. 1985. 
Lcklung ei- 
: durch mul- 
squium des 
itures of 
Altitudes of 
. Aug. 1986, 
Landscape methods of air-space data interpretation 
D.M.Kirejev 
All-Union ’Lesprojekt’ Association, Moscow, USSR 
The landscape methods for air-space data in 
terpretation are based on the concept, that 
the Earth*s geosphere is the system of na 
tural territorial complexes (PTK). PTK are 
historically established and dimensionally 
Isolated unities of five basic interacting 
and interconditioned nature components: li- 
thogenic basis (earth*s crust), atmosphere, 
water, flora and fauna, developing under the 
guiding influence of the llthogenic basis* 
PTK are understood as any complete consist 
ing of five components natural unities inde 
pendently on their complexity; continents, 
geographical countries, regions, districts, 
landscapes, terrains, stows, facies* PTK are 
separated from each other by objectively 
existing natural borders and they are cha 
racterized by the morphological structure, 
that is by the natural combination and inner 
distribution of repeated PTK of lower rank, 
which are smaller and simpler in structure 
and which are genetically and dynamically 
conjugated* PTK are relatively homogeneous 
in age, history of their formation (genesis), 
dynamic trends of their development, morpho 
logical structure and ecological regimes* 
PTK are revealed on the basis of their li- 
thogenic base community in the range of re 
lief shapes, their elements, tectonic struc 
tures, etc* 
The principle aims of the landscape met 
hods for air-space data interpretation are: 
revealing PTK, studying their genesis, mor 
phological structure, ecology, natural bor 
ders along with the simultaneous ecologo-ge- 
netic and applied classification of the re 
vealed units* 
The essence of the structural and analytic 
method for forest interpretation is the com 
mon use of the most general features of lan 
dscape when analysing the PTK structure by 
air-space photographs* The most important 
are nine features (they are enumerated in 
succession of co-ordination) i*e* genetic 
unity; age homogeneity from big to small 
units; contingency of components; leading 
role of llthogenic base features; territori 
al contingency of natural components; coin 
cidence of components borders; recurrence 
(rhythmics) and its regularities; specific 
features of different natural complexes stru 
cture; similarity of the structure of units 
which are genetically and dynamically simi 
lar (See Diagram 1)* 
Concrete recommendations and approaches 
to revealing natural complexes, i*e* neces 
sity of the analysis and use of genetic and 
dynamic rows, study of contingency and recu 
rrence of natural complexes, method for keys 
of different scales, method of landscape in 
dicators and other more particular methods 
and approaches logically follow from the 
said landscape features* 
The use of landscape natural features for 
forest interpretation considerably enlarges 
the volume of diagnostic features and land 
scape indicators and allows to implement ad 
ditional mutual control of interpretation 
results* 
Diagram 1* Natural features of PTK—^ana 
lysis of landscape morphological structure 
Genetic unity 
Study of PTK genetic rows for revealing mo 
dem structure and explaining relic featu 
res 
Study of genetic rows components within 
PTK types 
Increase of homogeneity (from large to 
small units)
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Volume

METS METS (entire work) MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Volume

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Damen, M. .C. .J. Remote Sensing for Resources Development and Environmental Management. A. A. Balkema, 1986.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fifth month of the year?:

I hereby confirm the use of my personal data within the context of the enquiry made.