Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Remote sensing for resources development and environmental management (Volume 1)

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Remote sensing for resources development and environmental management (Volume 1)

Multivolume work

Persistent identifier:
856342815
Title:
Remote sensing for resources development and environmental management
Sub title:
proceedings of the 7th international Symposium, Enschede, 25 - 29 August 1986
Year of publication:
1986
Place of publication:
Rotterdam
Boston
Publisher of the original:
A. A. Balkema
Identifier (digital):
856342815
Language:
English
Additional Notes:
Volume 1-3 erschienen von 1986-1988
Editor:
Damen, M. C. J.
Document type:
Multivolume work

Volume

Persistent identifier:
856343064
Title:
Remote sensing for resources development and environmental management
Sub title:
proceedings of the 7th international Symposium, Enschede, 25 - 29 August 1986
Scope:
XV, 547 Seiten
Year of publication:
1986
Place of publication:
Rotterdam
Boston
Publisher of the original:
A. A. Balkema
Identifier (digital):
856343064
Illustration:
Illustrationen, Diagramme
Signature of the source:
ZS 312(26,7,1)
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Editor:
Damen, M. C. J.
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Volume
Collection:
Earth sciences

Chapter

Title:
4 Renewable resources in rural areas: Vegetation, forestry, agriculture, soil survey, land and water use. Chairman: J. Besenicar, Liaisons: M. Molenaar, Th. A. de Boer
Document type:
Multivolume work
Structure type:
Chapter

Chapter

Title:
Tropical forest cover classification using Landsat data in north-eastern India. Ashbindu Singh
Document type:
Multivolume work
Structure type:
Chapter

Contents

Table of contents

  • Remote sensing for resources development and environmental management
  • Remote sensing for resources development and environmental management (Volume 1)
  • Cover
  • Title page
  • Title page
  • Title page
  • Preface
  • Organization of the Symposium
  • Working Groups
  • Table of contents
  • 1 Visible and infrared data. Chairman: F. Quiel, Liaison: N J. Mulder
  • 2 Microwave data. Chairman: N. Lannelongue, Liaison: L. Krul
  • 3 Spectral signatures of objects. Chairman: G. Guyot, Liaison: N. J. J. Bunnik
  • 4 Renewable resources in rural areas: Vegetation, forestry, agriculture, soil survey, land and water use. Chairman: J. Besenicar, Liaisons: M. Molenaar, Th. A. de Boer
  • Remote sensing in the evaluation of natural resources: Forestry in Italy. Eraldo Amadesi & Rodolfo Zecchi, Stefano Bizzi & Roberto Medri, Gilmo Vianello
  • Visual interpretation of MSS-FCC manual cartographic integration of data. E. Amamoo-Otchere
  • Optimal Thematic Mapper bands and transformations for discerning metal stress in coniferous tree canopies. C. Banninger
  • Land use along the Tana River, Kenya - A study with small format aerial photography and microlight aircraft. R. Beck, S. W. Taiti, D. C. P. Thalen
  • The use of multitemporal Landsat data for improving crop mapping accuracy. Alan S. Belward & John C. Taylor
  • Aerial photography photointerpretation system. J. Besenicar, A. Bilc
  • Inventory of decline and mortality in spruce-fir forests of the eastern U.S. with CIR photos. W. M. Ciesla, C. W. Dull, L. R. McCreery & M. E. Mielke
  • Field experience with different types of remote-sensing data in a small-scale soil and land resource survey in southern Tanzania. T. Christiansen
  • A remote sensing aided inventory of fuelwood volumes in the Sahel region of west Africa: A case study of five urban zones in the Republic of Niger. Steven J. Daus & Mamane Guero, Lawally Ada
  • Development of a regional mapping system for the sahelian region of west Africa using medium scale aerial photography. Steven J. Daus, Mamane Guero, Francois Sesso Codjo, Cecilia Polansky & Joseph Tabor
  • A preliminary study on NOAA images for non-destructive estimation of pasture biomass in semi-arid regions of China. Ding Zhi, Tong Qing-xi, Zheng Lan-fen & Wang Er-he, Xiao Qiang-Uang, Chen Wei-ying & Zhou Ci-song
  • The application of remote sensing technology to natural resource investigation in semi-arid and arid regions. Ding Zhi
  • Use of remote sensing for regional mapping of soil organisation data Application in Brittany (France) and French Guiana. M. Dosso, F. Seyler
  • The use of SPOT simulation data in forestry mapping. S. J. Dury, W. G. Collins & P. D. Hedges
  • Spruce budworm infestation detection using an airborne pushbroom scanner and Thematic Mapper data. H. Epp, R. Reed
  • Land use from aerial photographs: A case study in the Nigerian Savannah. N. J. Field, W. G. Collins
  • The use of aerial photography for assessing soil disturbance caused by logging. J. G. Firth
  • An integrated study of the Nairobi area - Land-cover map based on FCC 1:1M. F. Grootenhuis & H. Weeda, K. Kalambo
  • Explorations of the enhanced FCC 1:100.000 for development planning Land-use identification in the Nairobi area. F. Grootenhuis & H. Weeda, K. Kalambo
  • Contribution of remote sensing to food security and early warning systems in drought affected countries in Africa. Abdishakour A. Gulaid
  • Double sampling for rice in Bangladesh using Landsat MSS data. Barry N. Haack
  • Studies on human interference in the Dhaka Sal (Shorea robusta) forest using remote sensing techniques. Md. Jinnahtul Islam
  • Experiences in application of multispectral scanner-data for forest damage inventory. A. Kadro & S. Kuntz
  • Landscape methods of air-space data interpretation. D. M. Kirejev
  • Remote sensing in evaluating land use, land cover and land capability of a part of Cuddapan District, Andhra Preadesh, India. S. V. B. Krishna Bhagavan & K. L. V. Ramana Rao
  • Farm development using aerial photointerpretation in Ruvu River Valley, Ragamoyo, Tanzania, East Africa. B. P. Mdamu & M. A. Pazi
  • Application of multispectral scanning remote sensing in agricultural water management problems. G. J. A. Nieuwenhuis, J. M. M. Bouwmans
  • Mangrove mapping and monitoring. John B. Rehder, Samuel G. Patterson
  • Photo-interpretation of wetland vegetation in the Lesser Antilles. B. Rollet
  • Global vegetation monitoring using NOAA GAC data. H. Shimoda, K. Fukue, T. Hosomura & T. Sakata
  • National land use and land cover mapping: The use of low level sample photography. R. Sinange Kimanga & J. Lumasia Agatsiva
  • Tropical forest cover classification using Landsat data in north-eastern India. Ashbindu Singh
  • Classification of the Riverina Forests of south east Australia using co-registered Landsat MSS and SIR-B radar data. A. K. Skidmore, P. W. Woodgate & J. A. Richards
  • Remote sensing methods of monitoring the anthropogenic activities in the forest. V. I. Sukhikh
  • Comparison of SPOT-simulated and Landsat 5 TM imagery in vegetation mapping. H. Tommervik
  • Multi-temporal Landsat for land unit mapping on project scale of the Sudd-floodplain, Southern Sudan. Y. A. Yath, H. A. M. J. van Gils
  • Assessment of TM thermal infrared band contribution in land cover/land use multispectral classification. José A. Valdes Altamira, Marion F. Baumgardner, Carlos R. Valenzuela
  • An efficient classification scheme for verifying lack fidelity of existing county level findings to cultivated land cover areas. Yang Kai, Lin Kaiyu, Chen Jun & Lu Jian
  • The application of remote sensing in Song-nen plain of Heilongjiang province, China. Zhang Xiu-yin, Jin Jing, Cui Da
  • Cover

Full text

Table 1. Definitisn of cover classes 
2.6 Preprocessing 
514 
Cover classes Description Area-1 Area-2 
Forest 
Land covered by 
trees (woody plant 
with single stem 
and more than 5m. 
high), minimum 
area 2 ha. 
Closed forest 
Mixed broad-lea- V' 
ved forest, ca 
nopy closure>50% 
V 
Open forest 
Canopy closure, V 
20%-50% 
V 
Dense mixed 
bamboo forest 
Broad-leaved spe 
cies mixed with 
bamboos, canopy 
closure 750% 
V 
Scrub 
Vegetation type, 
the main woody 
elements of which 
are scrubs of 
more that 50cm. 
and less than 5m. 
height. They are 
woody plants with 
multiple stems of 
branching near 
the ground. 
V" 
Grassland 
Land covered by ч/ 
grass and her 
baceous plants, 
maximum height 
lm. 
Shifting 
Area which is v" 
cultivation under active 
cultivation, 
freshly burned 
or abandoned 
but regrowth 
is not more 
than two years 
old. 
Regrowth Areas left fallow 
long enough after 
shifting cultiva 
tion for vegeta 
tion to regene 
rate . 
Bare soil Land surface 
devoid of vege 
tation cover<20%. 
It includes built 
areas. 
Vindicates cover class belonging to either 
Area-1 or Area-2. 
2.5 Digital image processing 
Digital image processing was done on a 
microcomputer based interactive image proce 
ssing system housed in the Department of 
Geography, University ©f Reading,England 
with indigeneously developed software. 
Preprocessing of Landsat-2 MSS data was un 
dertaken in order to improve the image qua 
lity. 'Destriying' of the images was carried 
out by a histogram normalisation technique. 
Corrections for 'bit-slips' were also applied, 
3 CLASSIFICATION ANALYSIS 
3.1 Supervised classification 
A supervised multispectral image classifi 
cation procedure based on the minimum dis 
tance to means (Euclidean distance) algori 
thm was used in the study. In this classi 
fier a distance is computed for each pixel 
vector from the class means and the pixel 
is assigned to the class with the nearer 
means. Since this classifier is a special 
case of a more general maximum likelihood 
classifier and computationally can be pro 
grammed effecièntly it was thought ta be 
most suitable for implementing on the micro 
computer system. 
3.2 Reclassification 
In the classified image, usually, there are 
many isolated pixels whose classification 
is different from that of their neighbours. 
However, one would expect some degree of 
spatial dependence in land cover from pixel 
to pixel, if this spatial information can 
be incorporated in the classification pro 
cedure it would have the potential benefit 
of improving classification by removal of 
isolated inliers within homogeneous areas 
(Justice and Townshend 1982). One classifi 
cation smoothing algorithm is the majority 
filter which is illustrated in Fig.l. A 
spatial window of specified size (3x3, 5x5) 
is passed through the classified image and 
the center pixels classification is changed 
to the majority class of the surrounding 
pixels in the window. In this study the cla 
ssified images were reclassified using a 
3x3 majority filter. 
(a) Central pixel changed 
Original classification Reclassification 
Class Pixels 
AAA A 6 AAA 
ACB B 1 A A B 
CAA C 2 CAA 
(b) Central pixel unchanged 
Original classification Reclassification 
Class Pixels 
AAB A 3 A A B 
CCB B 3 CCB 
C B A c 3 C B A 
Figure 1. The 3-by -3 majority filter 
(Source: Schowengerdt 1983) 
4 ACCURACY ASSESSMENT 
After the classification, the results were 
evaluated to get an expression of its accu 
racy. In this study the accuracy assessment 
was conducted using 'test sets' and confu 
sion matrices. A confusion matrix is a square 
V" 
V \/
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Volume

METS METS (entire work) MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Volume

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Damen, M. .C. .J. Remote Sensing for Resources Development and Environmental Management. A. A. Balkema, 1986.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

Which word does not fit into the series: car green bus train:

I hereby confirm the use of my personal data within the context of the enquiry made.