Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Monograph

Persistent identifier:
856473650
Author:
Baltsavias, Emmanuel P.
Title:
Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
Sub title:
Joint ISPRS/EARSeL Workshop ; 3 - 4 June 1999, Valladolid, Spain
Scope:
III, 209 Seiten
Year of publication:
1999
Place of publication:
Coventry
Publisher of the original:
RICS Books
Identifier (digital):
856473650
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
  • Cover
  • ColorChart
  • Title page
  • CONTENTS
  • PREFACE
  • TECHNICAL SESSION 1 OVERVIEW OF IMAGE / DATA / INFORMATION FUSION AND INTEGRATION
  • DEFINITIONS AND TERMS OF REFERENCE IN DATA FUSION. L. Wald
  • TOOLS AND METHODS FOR FUSION OF IMAGES OF DIFFERENT SPATIAL RESOLUTION. C. Pohl
  • INTEGRATION OF IMAGE ANALYSIS AND GIS. Emmanuel Baltsavias, Michael Hahn,
  • TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
  • GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
  • GEORIS : A TOOL TO OVERLAY PRECISELY DIGITAL IMAGERY. Ph.Garnesson, D.Bruckert
  • AUTOMATED PROCEDURES FOR MULTISENSOR REGISTRATION AND ORTHORECTIFICATION OF SATELLITE IMAGES. Ian Dowman and Paul Dare
  • TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
  • LANDCOVER MAPPING BY INTERRELATED SEGMENTATION AND CLASSIFICATION OF SATELLITE IMAGES. W. Schneider, J. Steinwendner
  • INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
  • SCALE CHARACTERISTICS OF LOCAL AUTOCOVARIANCES FOR TEXTURE SEGMENTATION. Annett Faber, Wolfgang Förstner
  • BAYESIAN METHODS: APPLICATIONS IN INFORMATION AGGREGATION AND IMAGE DATA MINING. Mihai Datcu and Klaus Seidel
  • TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
  • AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
  • STRATEGIES AND METHODS FOR THE FUSION OF DIGITAL ELEVATION MODELS FROM OPTICAL AND SAR DATA. M. Honikel
  • INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
  • ANISOTROPY INFORMATION FROM MOMS-02/PRIRODA STEREO DATASETS - AN ADDITIONAL PHYSICAL PARAMETER FOR LAND SURFACE CHARACTERISATION. Th. Schneider, I. Manakos, Peter Reinartz, R. Müller
  • TECHNICAL SESSION 5 FUSION OF VARIABLE SPATIAL / SPECTRAL RESOLUTION IMAGES
  • ADAPTIVE FUSION OF MULTISOURCE RASTER DATA APPLYING FILTER TECHNIQUES. K. Steinnocher
  • FUSION OF 18 m MOMS-2P AND 30 m LANDS AT TM MULTISPECTRAL DATA BY THE GENERALIZED LAPLACIAN PYRAMID. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Ivan Pippi
  • OPERATIONAL APPLICATIONS OF MULTI-SENSOR IMAGE FUSION. C. Pohl, H. Touron
  • TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
  • KNOWLEDGE BASED INTERPRETATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Stefan Growe
  • AUTOMATIC RECONSTRUCTION OF ROOFS FROM MAPS AND ELEVATION DATA. U. Stilla, K. Jurkiewicz
  • INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
  • INTERACTIVE SESSION 1 IMAGE CLASSIFICATION
  • AN AUTOMATED APPROACH FOR TRAINING DATA SELECTION WITHIN AN INTEGRATED GIS AND REMOTE SENSING ENVIRONMENT FOR MONITORING TEMPORAL CHANGES. Ulrich Rhein
  • CLASSIFICATION OF SETTLEMENT STRUCTURES USING MORPHOLOGICAL AND SPECTRAL FEATURES IN FUSED HIGH RESOLUTION SATELLITE IMAGES (IRS-1C). Maik Netzband, Gotthard Meinel, Regin Lippold
  • ASSESSMENT OF NOISE VARIANCE AND INFORMATION CONTENT OF MULTI-/HYPER-SPECTRAL IMAGERY. Bruno Aiazzi, Luciano Alparone, Alessandro Barducci, Stefano Baronti, Ivan Pippi
  • COMBINING SPECTRAL AND TEXTURAL FEATURES FOR MULTISPECTRAL IMAGE CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORKS. H. He , C. Collet
  • TECHNICAL SESSION 7 APPLICATIONS IN FORESTRY
  • SENSOR FUSED IMAGES FOR VISUAL INTERPRETATION OF FOREST STAND BORDERS. R. Fritz, I. Freeh, B. Koch, Chr. Ueffing
  • A LOCAL CORRELATION APPROACH FOR THE FUSION OF REMOTE SENSING DATA WITH DIFFERENT SPATIAL RESOLUTIONS IN FORESTRY APPLICATIONS. J. Hill, C. Diemer, O. Stöver, Th. Udelhoven
  • OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT. R. de Kok, T. Schneider, U. Ammer
  • Author Index
  • Keyword Index
  • Cover

Full text

International Archives of Photogrammetry and Remote Sensing, Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999 
3.2 Integration of DTMs 
The integration concept consists of three steps: 
Step 1: Calculate a wavelet decomposition with M levels for the 
high resolution DTM and its associated covariance matrix. The 
number of levels is chosen in such a way that the coarsest scale 
level fits to the resolution of the second DTM. 
Step 2: The low-pass filtered coarse scale representation of the 
first DTM and the second DTM are merged together using 
weighted least squares averaging. The weights result from the 
inverted covariance matrices of both DTMs. This means that for 
the low-pass filtered DTMl the corresponding low-pass filtered 
covariance matrix Cl is used (Eqs. 1 and 2) and for DTM2 the 
given second DTM with its covariance matrix C2. 
Weighted least squares averaging is of course only one 
possibility among others. Other widely applied techniques for 
DTM interpolation like least squares prediction or Wiener 
filtering may be used, if they promise better results. 
Step 3: The merging result of both DTMs together with the 
calculated covariance matrix can be considered as the 
representation of the integrated DTM on scale level M. By 
using the reconstruction formulas (Eqs. 3 and 4) the estimates 
for the integrated DTM together with its accuracy can be 
calculated on all scales and in particular on the finest scale. 
Generalisation from two to several DTMs can be simply carried 
out by repeating the three steps. As soon as two DTMs are 
integrated the resulting height and accuracy data are taken as a 
new DTM which can be integrated with a third one. A fourth 
and fifth DTM and so on may follow. From the viewpoint of 
computational efficiency it might be reasonable to integrate 
coarser DTMs first and move on by integrating the higher 
resolution DTMs. But more important for the computational 
efficiency of the overall processing is the implementation of the 
wavelet decomposition and reconstruction formulas. The 
elaboration with the block-circulant matrices according to Eqs. 
1-4 is very convenient to understand the structure of the 
transform but for efficiency reasons a recursive implementation, 
essentially based on discrete convolutions, is required. For more 
details about the fast wavelet transform refer to Mallat (1989). 
In the next section, we visualise results of the wavelet 
decomposition and reconstruction, in particular those relating to 
the first and third step of the integration process and discuss the 
achievements by focussing on the accuracy. 
4. EXPERIMENTS 
4.1 Illustration of Integration Results 
In the experimental investigation we first want to visualise the 
overall DTM integration process, in particular for the terrain 
surface, over a number of scale levels. For that purpose, we use 
two DTM samples. The first one represents a rather smooth 
area, the other one a region with undulating terrain. The densely 
sampled rather noisy DTMs for both areas can be seen in 
Figures 2 and 4 together with another three lower scale levels of 
the DTM pyramid. On the coarse level, merging with a second 
DTM is carried out by least squares averaging as outlined in 
section 3. The second DTM given on the lower scale is not 
shown, as it looks fairly similar to the integration result on that 
2ÜJ0 , 
1530 
6DÜ n 
400 - 
200 >. 
100 
1000-. 
800. 
firm... 
40 
1000 
20 
Fig. 2. Experiment with smooth terrain. The noisy high resolution DTM and three lower scale levels are shown.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

baltsavias, emmanuel p. Fusion of Sensor Data, Knowledge Sources and Algorithms for Extraction and Classification of Topographic Objects. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fourth digit in the number series 987654321?:

I hereby confirm the use of my personal data within the context of the enquiry made.