Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Monograph

Persistent identifier:
856473650
Author:
Baltsavias, Emmanuel P.
Title:
Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
Sub title:
Joint ISPRS/EARSeL Workshop ; 3 - 4 June 1999, Valladolid, Spain
Scope:
III, 209 Seiten
Year of publication:
1999
Place of publication:
Coventry
Publisher of the original:
RICS Books
Identifier (digital):
856473650
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
  • Cover
  • ColorChart
  • Title page
  • CONTENTS
  • PREFACE
  • TECHNICAL SESSION 1 OVERVIEW OF IMAGE / DATA / INFORMATION FUSION AND INTEGRATION
  • DEFINITIONS AND TERMS OF REFERENCE IN DATA FUSION. L. Wald
  • TOOLS AND METHODS FOR FUSION OF IMAGES OF DIFFERENT SPATIAL RESOLUTION. C. Pohl
  • INTEGRATION OF IMAGE ANALYSIS AND GIS. Emmanuel Baltsavias, Michael Hahn,
  • TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
  • GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
  • GEORIS : A TOOL TO OVERLAY PRECISELY DIGITAL IMAGERY. Ph.Garnesson, D.Bruckert
  • AUTOMATED PROCEDURES FOR MULTISENSOR REGISTRATION AND ORTHORECTIFICATION OF SATELLITE IMAGES. Ian Dowman and Paul Dare
  • TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
  • LANDCOVER MAPPING BY INTERRELATED SEGMENTATION AND CLASSIFICATION OF SATELLITE IMAGES. W. Schneider, J. Steinwendner
  • INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
  • SCALE CHARACTERISTICS OF LOCAL AUTOCOVARIANCES FOR TEXTURE SEGMENTATION. Annett Faber, Wolfgang Förstner
  • BAYESIAN METHODS: APPLICATIONS IN INFORMATION AGGREGATION AND IMAGE DATA MINING. Mihai Datcu and Klaus Seidel
  • TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
  • AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
  • STRATEGIES AND METHODS FOR THE FUSION OF DIGITAL ELEVATION MODELS FROM OPTICAL AND SAR DATA. M. Honikel
  • INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
  • ANISOTROPY INFORMATION FROM MOMS-02/PRIRODA STEREO DATASETS - AN ADDITIONAL PHYSICAL PARAMETER FOR LAND SURFACE CHARACTERISATION. Th. Schneider, I. Manakos, Peter Reinartz, R. Müller
  • TECHNICAL SESSION 5 FUSION OF VARIABLE SPATIAL / SPECTRAL RESOLUTION IMAGES
  • ADAPTIVE FUSION OF MULTISOURCE RASTER DATA APPLYING FILTER TECHNIQUES. K. Steinnocher
  • FUSION OF 18 m MOMS-2P AND 30 m LANDS AT TM MULTISPECTRAL DATA BY THE GENERALIZED LAPLACIAN PYRAMID. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Ivan Pippi
  • OPERATIONAL APPLICATIONS OF MULTI-SENSOR IMAGE FUSION. C. Pohl, H. Touron
  • TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
  • KNOWLEDGE BASED INTERPRETATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Stefan Growe
  • AUTOMATIC RECONSTRUCTION OF ROOFS FROM MAPS AND ELEVATION DATA. U. Stilla, K. Jurkiewicz
  • INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
  • INTERACTIVE SESSION 1 IMAGE CLASSIFICATION
  • AN AUTOMATED APPROACH FOR TRAINING DATA SELECTION WITHIN AN INTEGRATED GIS AND REMOTE SENSING ENVIRONMENT FOR MONITORING TEMPORAL CHANGES. Ulrich Rhein
  • CLASSIFICATION OF SETTLEMENT STRUCTURES USING MORPHOLOGICAL AND SPECTRAL FEATURES IN FUSED HIGH RESOLUTION SATELLITE IMAGES (IRS-1C). Maik Netzband, Gotthard Meinel, Regin Lippold
  • ASSESSMENT OF NOISE VARIANCE AND INFORMATION CONTENT OF MULTI-/HYPER-SPECTRAL IMAGERY. Bruno Aiazzi, Luciano Alparone, Alessandro Barducci, Stefano Baronti, Ivan Pippi
  • COMBINING SPECTRAL AND TEXTURAL FEATURES FOR MULTISPECTRAL IMAGE CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORKS. H. He , C. Collet
  • TECHNICAL SESSION 7 APPLICATIONS IN FORESTRY
  • SENSOR FUSED IMAGES FOR VISUAL INTERPRETATION OF FOREST STAND BORDERS. R. Fritz, I. Freeh, B. Koch, Chr. Ueffing
  • A LOCAL CORRELATION APPROACH FOR THE FUSION OF REMOTE SENSING DATA WITH DIFFERENT SPATIAL RESOLUTIONS IN FORESTRY APPLICATIONS. J. Hill, C. Diemer, O. Stöver, Th. Udelhoven
  • OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT. R. de Kok, T. Schneider, U. Ammer
  • Author Index
  • Keyword Index
  • Cover

Full text

International Archives of Photogrammetry and Remote Sensing, Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999 
147 
Fig. 9. Result of the knowledge based segmentation for the object class ‘settlement’. 
Assuming that the appearance of landuse classes in satellite 
images can be characterized by a significant accumulation of 
pixels with typical reflectance values compared to the 
surrounding areas, the spatial distance of pixels with similar 
reflectance values can be a criterion to find object boundaries. 
As an example, Fig. 3 shows an original detail of a Landsat TM 
image and Fig. 4 the significant vegetation-free pixels (in black) 
as candidates for the object class 'settlement'. A successful 
method to determine the object contours is the use of 
triangulation networks, e.g. Delaunay triangulation, of the 
marked pixels (see Fig. 5). Based on all DLM200 settlement 
objects in the satellite image, statistics of the triangle perimeters 
(mean values, standard deviations) can be determined. This is 
used as a structural parameter related to the 'compactness' of 
the object. On the other hand, valid triangles can be extracted 
by means of this perimeter statistic (Fig. 6). After a fusion of all 
adjacent valid triangles, the object contours can be obtained 
(Fig. 7). The same procedure can be applied to all other - also 
the homogeneous ones - object classes. Fig. 8 shows the 
enclosing object contours for the accumulation of the marked 
pixels having a specific vegetation index and the corresponding 
DLM objects in this area. The result of the segmentation 
process is a symbolic scene description with polygonal objects 
of the three land use classes. 
In the last step of feature extraction, texture parameters inside 
the object contours are calculated. A very simple but efficient 
parameter is the standard deviation of the grey values inside the 
objects. Because of some disturbances, for instance caused by 
errors in the topographic database or errors in the geocoding of 
the satellite image, a histogram analysis of the grey value 
distribution is needed. In this histogram analysis, the peak of 
the grey value distribution is extracted and the minor peaks are 
eliminated. The standard deviation is estimated for this changed 
distribution. The result is a Modified Standard Deviation, 
which can be used as robust texture parameter (Fig. 10). Also 
test series with the well-known texture parameters proposed by 
Haralick and Shapiro (1992) have been carried out. The tests 
have shown that homogeneity is one of the best parameters to 
distinguish between the above defined object classes (Fig. 11). 
With both texture parameters the separability of homogeneous 
from inhomogeneous classes is very good. This is important for 
the spectrally similar classes ‘settlement’ and ‘agriculture’. 
n m 
homogeneity = xi 
j=l i=l 
w(i,j) 
1 + (g(i) — g(j)) 2 
w(i, j) ...element of the co - occurrence matrix 
g(i), g(j) ...grey values in a row / column 
Neigbourhood relations for an image object are determined by 
storing the identification code numbers of adjacent objects.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

baltsavias, emmanuel p. Fusion of Sensor Data, Knowledge Sources and Algorithms for Extraction and Classification of Topographic Objects. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the first letter of the word "tree"?:

I hereby confirm the use of my personal data within the context of the enquiry made.