Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Monograph

Persistent identifier:
856473650
Author:
Baltsavias, Emmanuel P.
Title:
Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
Sub title:
Joint ISPRS/EARSeL Workshop ; 3 - 4 June 1999, Valladolid, Spain
Scope:
III, 209 Seiten
Year of publication:
1999
Place of publication:
Coventry
Publisher of the original:
RICS Books
Identifier (digital):
856473650
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
  • Cover
  • ColorChart
  • Title page
  • CONTENTS
  • PREFACE
  • TECHNICAL SESSION 1 OVERVIEW OF IMAGE / DATA / INFORMATION FUSION AND INTEGRATION
  • DEFINITIONS AND TERMS OF REFERENCE IN DATA FUSION. L. Wald
  • TOOLS AND METHODS FOR FUSION OF IMAGES OF DIFFERENT SPATIAL RESOLUTION. C. Pohl
  • INTEGRATION OF IMAGE ANALYSIS AND GIS. Emmanuel Baltsavias, Michael Hahn,
  • TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
  • GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
  • GEORIS : A TOOL TO OVERLAY PRECISELY DIGITAL IMAGERY. Ph.Garnesson, D.Bruckert
  • AUTOMATED PROCEDURES FOR MULTISENSOR REGISTRATION AND ORTHORECTIFICATION OF SATELLITE IMAGES. Ian Dowman and Paul Dare
  • TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
  • LANDCOVER MAPPING BY INTERRELATED SEGMENTATION AND CLASSIFICATION OF SATELLITE IMAGES. W. Schneider, J. Steinwendner
  • INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
  • SCALE CHARACTERISTICS OF LOCAL AUTOCOVARIANCES FOR TEXTURE SEGMENTATION. Annett Faber, Wolfgang Förstner
  • BAYESIAN METHODS: APPLICATIONS IN INFORMATION AGGREGATION AND IMAGE DATA MINING. Mihai Datcu and Klaus Seidel
  • TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
  • AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
  • STRATEGIES AND METHODS FOR THE FUSION OF DIGITAL ELEVATION MODELS FROM OPTICAL AND SAR DATA. M. Honikel
  • INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
  • ANISOTROPY INFORMATION FROM MOMS-02/PRIRODA STEREO DATASETS - AN ADDITIONAL PHYSICAL PARAMETER FOR LAND SURFACE CHARACTERISATION. Th. Schneider, I. Manakos, Peter Reinartz, R. Müller
  • TECHNICAL SESSION 5 FUSION OF VARIABLE SPATIAL / SPECTRAL RESOLUTION IMAGES
  • ADAPTIVE FUSION OF MULTISOURCE RASTER DATA APPLYING FILTER TECHNIQUES. K. Steinnocher
  • FUSION OF 18 m MOMS-2P AND 30 m LANDS AT TM MULTISPECTRAL DATA BY THE GENERALIZED LAPLACIAN PYRAMID. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Ivan Pippi
  • OPERATIONAL APPLICATIONS OF MULTI-SENSOR IMAGE FUSION. C. Pohl, H. Touron
  • TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
  • KNOWLEDGE BASED INTERPRETATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Stefan Growe
  • AUTOMATIC RECONSTRUCTION OF ROOFS FROM MAPS AND ELEVATION DATA. U. Stilla, K. Jurkiewicz
  • INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
  • INTERACTIVE SESSION 1 IMAGE CLASSIFICATION
  • AN AUTOMATED APPROACH FOR TRAINING DATA SELECTION WITHIN AN INTEGRATED GIS AND REMOTE SENSING ENVIRONMENT FOR MONITORING TEMPORAL CHANGES. Ulrich Rhein
  • CLASSIFICATION OF SETTLEMENT STRUCTURES USING MORPHOLOGICAL AND SPECTRAL FEATURES IN FUSED HIGH RESOLUTION SATELLITE IMAGES (IRS-1C). Maik Netzband, Gotthard Meinel, Regin Lippold
  • ASSESSMENT OF NOISE VARIANCE AND INFORMATION CONTENT OF MULTI-/HYPER-SPECTRAL IMAGERY. Bruno Aiazzi, Luciano Alparone, Alessandro Barducci, Stefano Baronti, Ivan Pippi
  • COMBINING SPECTRAL AND TEXTURAL FEATURES FOR MULTISPECTRAL IMAGE CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORKS. H. He , C. Collet
  • TECHNICAL SESSION 7 APPLICATIONS IN FORESTRY
  • SENSOR FUSED IMAGES FOR VISUAL INTERPRETATION OF FOREST STAND BORDERS. R. Fritz, I. Freeh, B. Koch, Chr. Ueffing
  • A LOCAL CORRELATION APPROACH FOR THE FUSION OF REMOTE SENSING DATA WITH DIFFERENT SPATIAL RESOLUTIONS IN FORESTRY APPLICATIONS. J. Hill, C. Diemer, O. Stöver, Th. Udelhoven
  • OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT. R. de Kok, T. Schneider, U. Ammer
  • Author Index
  • Keyword Index
  • Cover

Full text

International Archives of Photogrammetry and Remote Sensing, Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999 
GCPs and the method of measuring their pixel coordinates. The 
localisation accuracy usually lies in the 0.5-1 pixel range. 
3.2.2. Geocoding 
Through geocoding, image data are transformed to a common 
reference map projection, e.g. defined through topographic 
maps being used. This is the standard procedure for remote 
sensing images. Displacement errors caused by topographic 
relief are removed through the integration of a DEM (in such a 
case, also the terms orthorectification and differential 
orthorectification are used). 
2. As the above transformation yields an irregular raster of 
points, a proper grey value interpolation/resampling has to 
be applied in order to get a regular raster. 
Grey value 
Figure 5 shows a general scheme of the image geocoding 
procedure. Based on a DEM and an optimised imaging model 
(see above), geocoding can be performed in two basic 
processing steps: 
1. First, for each output pixel which defines a co-ordinate 
triple (East, North, Height) in the output map projection, the 
corresponding location in the input image is determined 
through a so-called map-to-image transformation. 
2. Subsequently, a grey value is interpolated/resampled from 
neighbouring input image pixels and assigned to the related 
output pixel. 
3.2.3. Parametric Image-to-lmage Registration 
Alternatively to geocoding, image data can be registered in 
image geometry. Based on parametric methods this can be done 
through a so-called map-to-image transformation of geocoded 
image data into the geometry of a reference image. In the 
approach implemented at the Institute of Digital Image 
Processing, the images to be registered first have to be 
geocoded using the standard geocoding method. The 
transformation of the geocoded images to the geometry of 
another selected reference image is then done in a direct 
resampling approach in two steps (see Figure 6): 
1. For each geocoded input pixel the corresponding output 
pixel location, i.e. column and line values related to the 
reference image, is calculated using the transformation from 
map coordinates to the reference image. 
Fig. 5. Digital image geocoding workflow. 
Fig. 6. Workflow of transformation from map to image 
geometry.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

baltsavias, emmanuel p. Fusion of Sensor Data, Knowledge Sources and Algorithms for Extraction and Classification of Topographic Objects. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the first letter of the word "tree"?:

I hereby confirm the use of my personal data within the context of the enquiry made.