Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Monograph

Persistent identifier:
856473650
Author:
Baltsavias, Emmanuel P.
Title:
Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
Sub title:
Joint ISPRS/EARSeL Workshop ; 3 - 4 June 1999, Valladolid, Spain
Scope:
III, 209 Seiten
Year of publication:
1999
Place of publication:
Coventry
Publisher of the original:
RICS Books
Identifier (digital):
856473650
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
  • Cover
  • ColorChart
  • Title page
  • CONTENTS
  • PREFACE
  • TECHNICAL SESSION 1 OVERVIEW OF IMAGE / DATA / INFORMATION FUSION AND INTEGRATION
  • DEFINITIONS AND TERMS OF REFERENCE IN DATA FUSION. L. Wald
  • TOOLS AND METHODS FOR FUSION OF IMAGES OF DIFFERENT SPATIAL RESOLUTION. C. Pohl
  • INTEGRATION OF IMAGE ANALYSIS AND GIS. Emmanuel Baltsavias, Michael Hahn,
  • TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
  • GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
  • GEORIS : A TOOL TO OVERLAY PRECISELY DIGITAL IMAGERY. Ph.Garnesson, D.Bruckert
  • AUTOMATED PROCEDURES FOR MULTISENSOR REGISTRATION AND ORTHORECTIFICATION OF SATELLITE IMAGES. Ian Dowman and Paul Dare
  • TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
  • LANDCOVER MAPPING BY INTERRELATED SEGMENTATION AND CLASSIFICATION OF SATELLITE IMAGES. W. Schneider, J. Steinwendner
  • INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
  • SCALE CHARACTERISTICS OF LOCAL AUTOCOVARIANCES FOR TEXTURE SEGMENTATION. Annett Faber, Wolfgang Förstner
  • BAYESIAN METHODS: APPLICATIONS IN INFORMATION AGGREGATION AND IMAGE DATA MINING. Mihai Datcu and Klaus Seidel
  • TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
  • AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
  • STRATEGIES AND METHODS FOR THE FUSION OF DIGITAL ELEVATION MODELS FROM OPTICAL AND SAR DATA. M. Honikel
  • INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
  • ANISOTROPY INFORMATION FROM MOMS-02/PRIRODA STEREO DATASETS - AN ADDITIONAL PHYSICAL PARAMETER FOR LAND SURFACE CHARACTERISATION. Th. Schneider, I. Manakos, Peter Reinartz, R. Müller
  • TECHNICAL SESSION 5 FUSION OF VARIABLE SPATIAL / SPECTRAL RESOLUTION IMAGES
  • ADAPTIVE FUSION OF MULTISOURCE RASTER DATA APPLYING FILTER TECHNIQUES. K. Steinnocher
  • FUSION OF 18 m MOMS-2P AND 30 m LANDS AT TM MULTISPECTRAL DATA BY THE GENERALIZED LAPLACIAN PYRAMID. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Ivan Pippi
  • OPERATIONAL APPLICATIONS OF MULTI-SENSOR IMAGE FUSION. C. Pohl, H. Touron
  • TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
  • KNOWLEDGE BASED INTERPRETATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Stefan Growe
  • AUTOMATIC RECONSTRUCTION OF ROOFS FROM MAPS AND ELEVATION DATA. U. Stilla, K. Jurkiewicz
  • INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
  • INTERACTIVE SESSION 1 IMAGE CLASSIFICATION
  • AN AUTOMATED APPROACH FOR TRAINING DATA SELECTION WITHIN AN INTEGRATED GIS AND REMOTE SENSING ENVIRONMENT FOR MONITORING TEMPORAL CHANGES. Ulrich Rhein
  • CLASSIFICATION OF SETTLEMENT STRUCTURES USING MORPHOLOGICAL AND SPECTRAL FEATURES IN FUSED HIGH RESOLUTION SATELLITE IMAGES (IRS-1C). Maik Netzband, Gotthard Meinel, Regin Lippold
  • ASSESSMENT OF NOISE VARIANCE AND INFORMATION CONTENT OF MULTI-/HYPER-SPECTRAL IMAGERY. Bruno Aiazzi, Luciano Alparone, Alessandro Barducci, Stefano Baronti, Ivan Pippi
  • COMBINING SPECTRAL AND TEXTURAL FEATURES FOR MULTISPECTRAL IMAGE CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORKS. H. He , C. Collet
  • TECHNICAL SESSION 7 APPLICATIONS IN FORESTRY
  • SENSOR FUSED IMAGES FOR VISUAL INTERPRETATION OF FOREST STAND BORDERS. R. Fritz, I. Freeh, B. Koch, Chr. Ueffing
  • A LOCAL CORRELATION APPROACH FOR THE FUSION OF REMOTE SENSING DATA WITH DIFFERENT SPATIAL RESOLUTIONS IN FORESTRY APPLICATIONS. J. Hill, C. Diemer, O. Stöver, Th. Udelhoven
  • OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT. R. de Kok, T. Schneider, U. Ammer
  • Author Index
  • Keyword Index
  • Cover

Full text

International Archives of Photogrammetry and Remote Sensing, Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999 
Fig. 5. This stereo pair shows a small image patch from the low altitude flight. Laser points from the same region are projected back 
to the two images with their exterior orientation parameters. Viewed under a stereoscope, a vivid 3-D scene appears with the 
laser points on the top of the surface that is obtained by fusing the stereopair. The colored dots indicate different elevations, 
with red the lowest and blue the highest points. Note that blue points are on top of buildings. 
employed in aerial stereopairs, we may obtain surface 
discontinuities directly. This is because edges in aerial images 
may have been caused by breaklines in object space. Not all 
edges correspond to breaklines, but there is hardly a breakline 
that is not manifest as an edge in the image. Fusing surface 
features is actually a two step process. First, the images 
covering the same scene are processed using multiple image 
matching (Krupnik, 1996). Next, the surface obtained during 
image matching is fused with the laser surface. Obviously, the 
aerial imagery must be registered to the same object space the 
laser points are represented in. In turn, this requires an aerial 
triangulation. To achieve the best fit between the visible and 
laser surface, the aerial triangulation should be performed by 
incorporating the laser data (Jaw, 1999). 
Figure 5 illustrates the registration of the visible and the laser 
surface. Here, a small image patch from two overlapping 
photographs is shown, together with laser points that have 
been projected back from object space to the images based on 
their exterior orientation. Viewed under a stereoscope, one 
gets a vivid 3-D impression of the surface. The figure also 
demonstrates the distribution of laser points, which is rather 
random with respect to surface features. For example, features 
smaller than the (irregular) sampling of laser point may not be 
captured. Moreover, Figure 6 clearly supports the claim that 
breaklines, such as roof outlines, should be determined from 
the aerial imagery. 
The refined surface, obtained in a two step fusion process, is 
now analyzed for humps in an attempt to separate the 
topographic surface. Then, the difference between the refined 
and the topographic surface would result in what we call 
hump-objects of a certain vertical dimension. The prime 
motivation is to partition the object space, such that the 
subsequent surface segmentation is only performed in areas 
identified as humps. The segmentation is a multi-stage 
grouping process aimed at determining a hierarchy of edges 
and surface patches. As an example, breaklines are segmented 
Fig. 6. Superimposed on the aerial image are the results from 
classifying the multispectral imagery and from 
segmenting the laser surface. Pink areas indicate dark, 
non-vegetated regions, and yellow are bright, non- 
vegetated regions. Green refers to woody vegetation. 
Finally, blue are shaded areas. The red contours are 
derived from laser data and they indicate humps. The 
combination green (from multispectral) and hump 
(from laser) triggers the hypothesis for a tree, for 
example. A hump with planar surface patches and a 
non-vegetated region is used for a building 
hypothesis. 
The fusion of surface information from aerial imagery and 
laser scanning systems ought to take into account the 
strengths and weaknesses of the two sensors. The major 
advantage of laser measurements is the high density and high 
quality. However, breaklines and formlines must be extracted 
from irregularly spaced samples. If feature-based matching is
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

baltsavias, emmanuel p. Fusion of Sensor Data, Knowledge Sources and Algorithms for Extraction and Classification of Topographic Objects. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fifth month of the year?:

I hereby confirm the use of my personal data within the context of the enquiry made.