Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects

Monograph

Persistent identifier:
856473650
Author:
Baltsavias, Emmanuel P.
Title:
Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
Sub title:
Joint ISPRS/EARSeL Workshop ; 3 - 4 June 1999, Valladolid, Spain
Scope:
III, 209 Seiten
Year of publication:
1999
Place of publication:
Coventry
Publisher of the original:
RICS Books
Identifier (digital):
856473650
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects
  • Cover
  • ColorChart
  • Title page
  • CONTENTS
  • PREFACE
  • TECHNICAL SESSION 1 OVERVIEW OF IMAGE / DATA / INFORMATION FUSION AND INTEGRATION
  • DEFINITIONS AND TERMS OF REFERENCE IN DATA FUSION. L. Wald
  • TOOLS AND METHODS FOR FUSION OF IMAGES OF DIFFERENT SPATIAL RESOLUTION. C. Pohl
  • INTEGRATION OF IMAGE ANALYSIS AND GIS. Emmanuel Baltsavias, Michael Hahn,
  • TECHNICAL SESSION 2 PREREQUISITES FOR FUSION / INTEGRATION: IMAGE TO IMAGE / MAP REGISTRATION
  • GEOCODING AND COREGISTRATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Hannes Raggam, Mathias Schardt and Heinz Gallaun
  • GEORIS : A TOOL TO OVERLAY PRECISELY DIGITAL IMAGERY. Ph.Garnesson, D.Bruckert
  • AUTOMATED PROCEDURES FOR MULTISENSOR REGISTRATION AND ORTHORECTIFICATION OF SATELLITE IMAGES. Ian Dowman and Paul Dare
  • TECHNICAL SESSION 3 OBJECT AND IMAGE CLASSIFICATION
  • LANDCOVER MAPPING BY INTERRELATED SEGMENTATION AND CLASSIFICATION OF SATELLITE IMAGES. W. Schneider, J. Steinwendner
  • INCLUSION OF MULTISPECTRAL DATA INTO OBJECT RECOGNITION. Bea Csathó , Toni Schenk, Dong-Cheon Lee and Sagi Filin
  • SCALE CHARACTERISTICS OF LOCAL AUTOCOVARIANCES FOR TEXTURE SEGMENTATION. Annett Faber, Wolfgang Förstner
  • BAYESIAN METHODS: APPLICATIONS IN INFORMATION AGGREGATION AND IMAGE DATA MINING. Mihai Datcu and Klaus Seidel
  • TECHNICAL SESSION 4 FUSION OF SENSOR-DERIVED PRODUCTS
  • AUTOMATIC CLASSIFICATION OF URBAN ENVIRONMENTS FOR DATABASE REVISION USING LIDAR AND COLOR AERIAL IMAGERY. N. Haala, V. Walter
  • STRATEGIES AND METHODS FOR THE FUSION OF DIGITAL ELEVATION MODELS FROM OPTICAL AND SAR DATA. M. Honikel
  • INTEGRATION OF DTMS USING WAVELETS. M. Hahn, F. Samadzadegan
  • ANISOTROPY INFORMATION FROM MOMS-02/PRIRODA STEREO DATASETS - AN ADDITIONAL PHYSICAL PARAMETER FOR LAND SURFACE CHARACTERISATION. Th. Schneider, I. Manakos, Peter Reinartz, R. Müller
  • TECHNICAL SESSION 5 FUSION OF VARIABLE SPATIAL / SPECTRAL RESOLUTION IMAGES
  • ADAPTIVE FUSION OF MULTISOURCE RASTER DATA APPLYING FILTER TECHNIQUES. K. Steinnocher
  • FUSION OF 18 m MOMS-2P AND 30 m LANDS AT TM MULTISPECTRAL DATA BY THE GENERALIZED LAPLACIAN PYRAMID. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Ivan Pippi
  • OPERATIONAL APPLICATIONS OF MULTI-SENSOR IMAGE FUSION. C. Pohl, H. Touron
  • TECHNICAL SESSION 6 INTEGRATION OF IMAGE ANALYSIS AND GIS
  • KNOWLEDGE BASED INTERPRETATION OF MULTISENSOR AND MULTITEMPORAL REMOTE SENSING IMAGES. Stefan Growe
  • AUTOMATIC RECONSTRUCTION OF ROOFS FROM MAPS AND ELEVATION DATA. U. Stilla, K. Jurkiewicz
  • INVESTIGATION OF SYNERGY EFFECTS BETWEEN SATELLITE IMAGERY AND DIGITAL TOPOGRAPHIC DATABASES BY USING INTEGRATED KNOWLEDGE PROCESSING. Dietmar Kunz
  • INTERACTIVE SESSION 1 IMAGE CLASSIFICATION
  • AN AUTOMATED APPROACH FOR TRAINING DATA SELECTION WITHIN AN INTEGRATED GIS AND REMOTE SENSING ENVIRONMENT FOR MONITORING TEMPORAL CHANGES. Ulrich Rhein
  • CLASSIFICATION OF SETTLEMENT STRUCTURES USING MORPHOLOGICAL AND SPECTRAL FEATURES IN FUSED HIGH RESOLUTION SATELLITE IMAGES (IRS-1C). Maik Netzband, Gotthard Meinel, Regin Lippold
  • ASSESSMENT OF NOISE VARIANCE AND INFORMATION CONTENT OF MULTI-/HYPER-SPECTRAL IMAGERY. Bruno Aiazzi, Luciano Alparone, Alessandro Barducci, Stefano Baronti, Ivan Pippi
  • COMBINING SPECTRAL AND TEXTURAL FEATURES FOR MULTISPECTRAL IMAGE CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORKS. H. He , C. Collet
  • TECHNICAL SESSION 7 APPLICATIONS IN FORESTRY
  • SENSOR FUSED IMAGES FOR VISUAL INTERPRETATION OF FOREST STAND BORDERS. R. Fritz, I. Freeh, B. Koch, Chr. Ueffing
  • A LOCAL CORRELATION APPROACH FOR THE FUSION OF REMOTE SENSING DATA WITH DIFFERENT SPATIAL RESOLUTIONS IN FORESTRY APPLICATIONS. J. Hill, C. Diemer, O. Stöver, Th. Udelhoven
  • OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT. R. de Kok, T. Schneider, U. Ammer
  • Author Index
  • Keyword Index
  • Cover

Full text

International Archives of Photogrammetry and Remote Sensing, Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999 
urban environment the classification results can be improved 
considerably, if the normalized DSM representing the local 
height above terrain is introduced as an additional database 
during classification. 
□ 
Buildings 
Roads 
Trees 
Grass-covered 
Fig. 8. Maximum likelihood classification based on CIR 
imagery and laser data. 
3.4. Further Improvement by Shadow Analysis 
One problem, when classifying areas with rough surfaces and 
steep slopes as they can occur in urban areas, is the change of 
spectral reflectance due to the presence of shadow areas. In 
order to avoid these problems, the shadow areas can be derived 
automatically based on the given DSM and used as an 
additional source of information during the classification 
process. The result of the automatic generation of shadow areas 
is given in Figure 9. 
Fig. 9. Shadow areas as derived from DSM. 
For the automatic detection of shadow areas, the local height, 
which is provided by the laser DSM as well as the elevation and 
azimuth of the sun at the time of image acquisition is required. 
The elevation and azimuth of the sun can either be determined 
manually, by an interactive measurement of an edge of a 
shadowed area in the image and the corresponding object height 
in the normalized DSM, or derived automatically from the 
geographical latitude and longitude of the captured area and the 
time of image acquisition. 
The improvement of the classification when using predefined 
shadow areas is demonstrated in Figures 11 and 12, using the 
test area depicted in Figure 10. In Figure 11, the 
misclassifications in shadow areas are clearly visible. These 
misclassifications can be avoided, if the class shadow is 
determined in advance based on the analysis of the given DSM 
and excluded from further classification like it is demonstrated 
in Figure 12. 
Fig. 10. Ortho-image. 
Buildings 
Grass-covered 
Roads 
Trees 
Not classified 
Fig. 11. Classification without using shadow areas. 
In order to avoid the shadow class in the final result, the 
approach can be further refined by splitting each of the landuse 
classes into one separate class for shadow areas and one landuse 
class for non-shadow areas. This leads to a significant 
improvement of the results because the pixels in shadow areas 
have completely different spectral characteristics than the ones
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

baltsavias, emmanuel p. Fusion of Sensor Data, Knowledge Sources and Algorithms for Extraction and Classification of Topographic Objects. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the first letter of the word "tree"?:

I hereby confirm the use of my personal data within the context of the enquiry made.