Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Monograph

Persistent identifier:
856566209
Author:
Chen, Jun
Title:
The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
Sub title:
May 23 - 25, 2001, Bangkok, Thailand
Scope:
VI, 434 Seiten
Year of publication:
2001
Place of publication:
Pathumthani, Thailand
Publisher of the original:
AIT
Identifier (digital):
856566209
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
DISTRIBUTION ANALYSIS AND AUTOMATIC GENERALIZATION OF URBAN BUILDING CLUSTER. Tinghua AI
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
  • Cover
  • ColorChart
  • Title page
  • PREFACE
  • Conference Venue
  • CONTENTS
  • DISTRIBUTION ANALYSIS AND AUTOMATIC GENERALIZATION OF URBAN BUILDING CLUSTER. Tinghua AI
  • GENERALIZATION FOR 3D GIS. Fengwen BAI, Xiaoyong CHEN
  • USING IKONOS HIGH RESOLUTION REMOTE SENSING DATA FOR LAND USE CLASSIFICATION IN CHINA. Georg BARETH
  • LARGE SCALE GIS FOR A SUBURBAN TOWNSHIP OF BEIJING TO MODEL STRATEGIES FOR SUSTAINABLE AGRICULTURE ON FIELD LEVEL. Georg BARETH, Si JIN, Tailai YAN and Reiner DOLUSCHITZ
  • THREE LEVEL HIERARCHICAL QUALITATIVE DESCRIPTIONS FOR DIRECTIONS OF SPATIAL OBJECTS. Han CAO, Jun CHEN, Daosheng Du
  • THE APPLICATION OF CENTROGRAPHIC ANALYSIS TO THE STUDY OF THE INTRA-URBAN MIGRATORY PHENOMENON IN THE GREATER MONCTON AREA IN CANADA, 1981-1996. Huhua CAO
  • PER-FIELD CLASSIFICATION INTEGRATING VERY FINE SPATIAL RESOLUTION SATELLITE IMAGERY WITH TOPOGRAPHIC DATA. Mauro CAPRIOLI, Eufemia TARANTINO
  • INTEGRATION OF GIS WITH PESTICIDES LOSSES RUNOFF MODEL. Bing CHEN, Gordon HUANG, Jonathan LI, Yueren LI, and Yifan LI
  • RESEARCH ON 3D CITY VISUALIZATION BASED ON INTERNET. Jing CHEN, Qingquan Ll, Jianya GONG, Bisheng YANG
  • DYNAMIC AND MULTI-DIMENSIONAL GIS: AN OVERVIEW. Jun CHEN, Zhilin LI, Jie JIANG
  • A GIS-SUPPORTED ENVIRONMENTAL RISK ASSESSMENT FOR PETROLEUM WASTE CONTAMINATED SITE. Su Chen, Gordon Huang, and Jonathan Li
  • MEASURING UNCERTAINTY IN SPATIAL FEATURES IN A THREE-DIMENSIONAL GEOGRAPHICAL INFORMATION SYSTEM. Chui Kwan CHEUNG and Wenzhong SHI
  • SPATIAL DEVELOPMENT RESEARCH OF LARGE CITY BASED ON GIS SPATIAL ANALYSIS. Anrong DANG, Qizhi MAO, Xiaodong WANG
  • DIGITAL CLOSE RANGE PHOTOGRAMMETRY: A POTENTIAL TOOL FOR LAND FEATURE PRESENTATION. Gang DENG
  • 3D SPATIAL OBJECTS MODELING AND VISUALIZATION BASED ON LASER LANGE DATA. Jie DU, Apisit EIUMNOH, Xiaoyang CHEN, Michiro KUSANAGI
  • 3D REPRESENTATION AND SIMULATION OF MINING SUBSIDING LAND BASED ON GIS, DPS AND GPS. Peijun DU, Dazhi GUO and Qihao WENG
  • USE DSM/DTM TO SUPPORT CHANGE DETECTION OF BUILDING IN URBAN AREA. Hong FAN, Jianqing ZHANG, Zuxun ZHANG, Zhifang LIU
  • ENHANCE MANAGEMENT LEVEL OF URBAN WATER SUPPLY DEPARTMENT WITH 3S TECHNOLOGY. Yewen FAN and Wei WANG
  • AUTOMATIC REGISTRATION OF SATELLITE IMAGE TO MAP. Kensaku FUJII
  • DIFFERENTIAL SATELLITE POSITIONING OVER INTERNET. Ying. GAO and Zhi. LIU
  • FEDERATED SPATIAL DATABASES AND INTEROPERABILITY. Jianya GONG, Yandong WANG
  • OPTIMIZING PATH FINDING IN VEHICLE NAVIGATION CONSIDERING TURN PENALTIES AND PROHIBITIONS. Gang HAN, Jie JANG, Jun CHEN
  • DEVELOPMENT OF DYNAMIC MANAGEMENT SPATIAL-TEMPORAL INFORMATION SYSTEM AND APPLICATION FOR CENSUS DATA- TOWARD ASIAN SPATIAL TEMPORAL GIS (ST-GIS) (2)-. Michinori HATAYAMA, Shigeru KAKUMOTO, Hiroyuki KAMEDA
  • MODELING LAND USE EFFECT ON URBAN STORM RUNOFF AT THE WATERSHED SCALE. Chansheng HE
  • EXTRACTION OF THE SEA OIL INFORMATION FROM TM AND AVHRR IMAGE BY THE METHOD OF FEATURE DATA LINE -WINDOW. Fengrong HUANG
  • THE APPLICATION OF NEURAL NETWORK AND FUZZY SET TO CLASSIFICATION OF REMOTELY SENSED IMAGERY. Dongmin HUO, Jingxiong ZHANG, Jiabing SUN
  • A SELF-ADAPTIVE ALGORITHM OF AUTOMATIC INTERIOR ORIENTATION FOR METRIC IMAGES. Wanshou JIANG, Guo ZHANG, Deren LI
  • DETECTION OF SHEER CHANGES IN AERIAL PHOTO IMAGES USING AN ADAPTIVE NONLINEAR MAPPING. Yukio KOSUGI, Munenori FUKUNISHI, Mitsuteru SAKAMATO, Wei LU and Takeshi DOIHARA
  • EFFECTIVENESS OF MENU-DRIVEN VS. SCRIPT-BASED GIS TUTORIAL SYSTEMS. Bin LI
  • BUILDING OF B/S-BASED OBJECT ORIENTED ELECTRONIC CHART DATABASE. Guangru LI, Shaopeng SUN, Depeng ZHAO
  • MINE GIS 3D DATA MODEL AND SOME THINKING. Q. Y. LI, D. Y. CAO, X. D. ZHU
  • THE RESEARCH OF THE INFINITELY VARIABLE MAP SCALE IN GIS. Yifan LI, Shaopeng SUN
  • RESEARCH ON INFORMATION AUTOMATIC GENERALIZATION WITH VARYING MAP SCALE. Yuanhui LI, Dan LIU, Yifan LI
  • QUANTITATIVE MEASURES FOR SPATIAL INFORMATION OF MAPS. Zhilin LI and Peizhi HUANG
  • AN ALGEBRA FOR SPATIAL RELATIONS. Zhilin LI, Renliang ZHAO and Jun CHEN
  • A STUDY ON THE EXTRACTION OF DEM FROM SINGLE SAR IMAGE. Mingsheng LIAO, Jie YANG, Hui LIN
  • A GIS-BASED ENVIRONMENTAL DECISION SUPPORT SYSTEM FOR THE ERHAI LAKE WATERSHED MANAGEMENT. Lei LIU, Gordon HUANG, and Jonathan LI
  • APPLICATION OF 4D AND ASSOCIATED ENABLING TECHNOLOGIES FOR URBAN DECISION SUPPORT SYSTEM. Rong LIU, Penggen CHENG, Zhuguo XING, Kaiyun LU
  • 3D RECONSTRUCTION OF A BUILDING FROM SINGLE IMAGE. Yawen LIU, Zuxun ZHANG, Jianqing ZHANG
  • AN INTELLIGENT GIS SEARCH ENGINE TO RETRIEVE INFORMATION FROM INTERNET. Zhe LIU, Yong GAO
  • AN ENHANCED TIN GENERATION METHOD FOR USING CONTOUR LINE AS CONSTRAINS. Wei LU, Takeshi DOIHARA
  • NON-LINEAR RECTIFICATION OF MAP WITH COLLINEAR CONSTRAIN. Wei LU, Takeshi DOIHARA
  • A STUDY ON VEHICLE POINT CORRECTING ALGORITHM IN GPS/AVL SYSTEMS. HongShan NIU, Jie XU, Hong LI
  • A SPATIO-TEMPORAL GEOGRAPHIC INFORMATION SYSTEM BASED ON IMPLICIT TOPOLOGY DESCRIPTION: STIMS. Yutaka OHSAWA, Atushi NAGASHIMA
  • APPLICATION OF VRML IN A DYNAMIC AND MULTI-DIMENSIONAL DIGITAL HARBOR. Mingyang PAN, Yifan LI, Depeng ZHAO
  • A COMMON DATA MODEL AND REQUESTING LANGUAGE FOR SPATIAL INFORMATION MARKETPLACES. Matthew Y. C. PANG, Wenzhong SHI, Geoffrey SHEA
  • TOPOLOGIC DATA STRUCTURE FOR A 3D GIS. Mattias Pfund
  • AUTOMATIC RECOGNITION AND LOCATION OF ROAD SIGNS FROM TERRESTERIAL COLOR IMAGERY. Sompoch PUNTAVUNGKOUR, Xiaoyang CHEN, Michiro KUSANAGI
  • A NEW STEREO MATCHING APPROACH USING EDGES AND NONLINEAR MATCHING PROCESS OBJECTED FOR URBAN AREA. Mitsuteru SAKAMOTO, Wei LU, Pingtao WANG
  • MINING SEQUENTIAL PATTERN FROM GEOSPATIAL DATA. Yin SHAN
  • THE ADVANCED GIS AND GPS TECHNOLOGIES TO BE USED IN THE LANCHANG BASIN AREA OF YUNNAN PROVINCE OF CHINA. Kun SHI
  • PRIMARY SPATIAL CHANGES. Hong SHU, Christopher GOLD and Jun CHEN
  • INCORPORATING 3D GEO-OBJECTS INTO AN EXISTING 2D GEO-DATABASE: AN EFFICIENT USE OF GEO-DATA. Jantien STOTER, Peter VAN OOSTEROM
  • A FRAMEWORK FOR AUTOMATED CHANGE DETECTION SYSTEM. Haigang SUI, Deren LI, Jianya GONG
  • BUILDING DISTRIBUTED GEOGRAPHIC INFORMATION SYSTEM FOR OCEAN TRANSPORTATION (GIS-OT). Shaopeng SUN, Guangru LI, Depeng ZHAO
  • COMPUTATION OF ACCURACY ASSESSMENT IN THE INTEGRATION OF PHOTOGRAPH AND LASER DATA. Taravudh TIPDECHO & Xiaoyong CHEN
  • PROXIMITY AND ACCESSIBILITY TO SUITABLE JOBS AMONG WORKERS OF VARIOUS WAGE GROUPS. Fahui WANG
  • WEB MAPPING WITH GEOGRAPHY MARKUP LANGUAGE. Xingling WANG, Chongjun YANG, Donglin LIU
  • INTEGRATION OF COMPACTNESS MEASUREMENT METHODS USING FUZZY MULTICRITERIA DECISION MAKING : A NEW APPROACH FOR COMPACTNESS MEASUREMENT IN SHAPE BASED REDISTRICTING ALGORITHM. Yinchai WANG
  • GIS-BASED SYSTEM FOR RAINFALL ESTIMATION USING RAINGAUGE DATA: A PROTOTYPE. Yinchai WANG, Teck Kiong SIEW
  • A NEW APPROACH FOR DISTRIBUTED GIS. Yuxiang WANG, Chongjun YANG, Donglin LIU
  • GEOD2D: A FLEXIBLE SOLUTION FOR GIS DATA EXCHANGE BASED ON COM. Huayi WU, Xinyan ZHU
  • GEOLOGICAL DATA ORGANIZATION FOR FEM BASED ON 3D GEOSCIENCE MODELING. Lixin WU, Enke HOU, Chunan TANG
  • DIGITAL MODEL AND GPS BASED PATH REPRESENTATION AND OPTIMIZATION. Linyuan XIA
  • AN COMPOSITE TEMPORAL DATA MODEL IN CADASTRAL INFORMATION SYSTEM. Changsheng XUE, Qingquan LI, and Bisheng YANG, Yuanchun HUA, Shiwu XU
  • A SPATIAL-TEMPORAL DATA MODEL FOR MOVING AREA PHENOMENA. Shanzhen Yl, Yong ZHONG, Lizhu ZHOU, Jun CHEN, Qilun LIU
  • CONSTRUCTION OF 3D MODELS FOR ELEVATED OBJECTS IN URBAN AREAS USING AIRBORNE SAR POLARIMETRIC DATA. Yalkun YUSUF, Masashl MATSUOKA, Fumio YAMAZAKI, Seiho URATSUKA, Tatsuharu KOBAYASHI, Makoto SATAKE
  • COASTAL GIS: FUNCTIONALITY VERSUS APPLICATIONS. Thomas Q ZENG, Qiming ZHOU, Peter COWELL and Haijun HUANG
  • CIS AIDED CHARACTERIZATION OF SOIL AND GROUNDWATER ARSENIC CONTAMINATION IN SOUTHERN THAILAND. Jianjun ZHANG, Xiaoyong CHEN, Preeda PARKPIAN, Monthip Sriratana TABUCANON, Janewit WONGSANOON, Kensuke FUKUSHI, Skorn MONGKOLSUK and N.C.THANH
  • MULTIRESOLUTION TERRIAN MODEL. Jin ZHANG
  • A TROUS WAVELET DECOMPOSITION APPLIED TO DETECTING IMAGE EDGE. Xiaodong ZHANG, Deren LI
  • RESEARCH OF THE LAND MANAGEMENT INFORMATION SYSTEM BASED ON WEB GIS AND SPATIAL DATABASES FOR PROVINCIAL AND LOCAL GOVERNMENTS IN CHINA. Junsan ZHAO, Yaolong ZHAO, Qiaogui ZHAO and Tao WEI
  • ANALYSING BRANCH BANK CLOSURES USING GIS AND THE SMART MODEL. Lihua ZHAO, Barry J. GARMER
  • QTM-BASED ALGORITHM FOR THE GENERATING OF VORONOI DIAGRAM FOR SPHERICAL OBJECTS. Xuesheng ZHAO, Jun CHEN
  • MODELING AND LANDSCAPE OF HIGHWAY CAD. Jiaqing ZHENG, Xi’an ZHAO, Chujiang CHEN
  • ASSISTING THE DEVELOPMENT OF KNOWLEDGE FOR PREDICTIVE MAPPING USING A FUZZY C-MEANS CLASSIFICATION. A-Xing ZHU, Edward ENGLISH
  • THE DESIGN AND IMPLEMENTATION OF CYBERCITY GIS (CCGIS). Qing ZHU, Deren LI, Yeting ZHANG, Hanjiang XIONG
  • 3D COMPUTER SIMULATION OF ANCIENT CHINESE TIMBER BUILDINGS. Yixuan ZHU, Jie YANG, Deren LI
  • 3D MODELLING FOR AUGMENTED REALITY. Siyka ZLATANOVA
  • THE DESIGN OF SPATIAL DATA WAREHOUSE. Yijiang ZOU
  • AUTHOR INDEX
  • Cover

Full text

ISPRS, Vol.34, Part 2W2, “Dynamic and Multi-Dimensional GIS”, Bangkok, May 23-25, 2001 
concrete operation in building cluster generalization. How to use 
them in a complete generalization process depends on workflow 
control. Considering the fact that conflict in building cluster is 
related to each other, we can not simply aggregate all the conflict 
object which is connective. Aggregation of part of conflict object 
and displacement may resolve the conflict between different part 
groups. Especially when scale changes largely, the predefinition 
of large conflict distance may lead to all building locating within 
one street block are conflict. Obviously it is not proper to 
combine all building into a big one. The whole control workflow of 
building cluster generalization should be a progressive 
procedure to remove conflict step by step. 
If the distribution frequency of skeleton width covers a broad 
range, and the width value is able to be obviously distinguished, 
we can introduce MST method idea(Regnauld 1997) to control 
the generalization procedure. It takes into account the distance 
difference not only in quality between conflict and non-conflict 
but also in quantity. The workflow is described briefly as follows. 
Repeat the following steps until step i> finds no conflict: 
i> Construct triangulation, compute GP and find conflict 
skeleton, conflict building object. 
ii> Sort the conflict skeleton on weighted width from short to 
long. 
iii> Scan conflict skeleton to check the related left and right 
conflict OP. Two OPs can only remain current scanned 
skeleton as conflict. Remove other conflict skeletons. 
iv> Resolve remained conflicts using the above aggregation 
method. 
The above workflow guarantees each conflict removal happens 
exactly between two buildings. Figure 11 illustrates some 
procedures of building cluster generalization. 
If the building distribution is random and the conflict s are few, 
the above workflow can get proper generalized result. The 
questions exist in next two aspects. 
1> The early aggregated building will displace many times in 
following processes and the position accuracy may be 
damaged. 
2> Distribution pattern can not be maintained. 
The workflow improvement depends on further grouping the 
conflict objects which have been identified by adjacent distance. 
The mini distance difference is not able to distinguish building 
group, requesting non-distance standard. The Gestalt nature in 
building size, orientation, shape, distribution structure is an 
important consideration fact. 
Connecting center points within Voronoi diagram polygon gets 
Fig. 12. The network of connective conflict 
building object 
dual geometric construction, Delaunay triangulation. 
Correspondingly, based on building partitioning model, 
connecting representative points of conflict building obtains 
some connective networks, as shown in Figure 12. The further 
works of this research in the future is to discover building 
distribution pattern based on network analysis and combined 
with other methods. 
5. CONCLUSION 
Based on Delaunay triangulation skeleton, this study constructs 
a building partitioning model which is similar to Voronoi diagram. 
The nature of equally separating space makes it a powerful tool 
to analyze polygon distribution cluster. When applied in building 
cluster generalization, it enables to solve conflict detection, 
displacement offset and direction computation. The improved 
distance computation between two buildings takes into account 
the context environment and conforms to visual cognition. The 
model and algorithm presented in the paper has been realized in 
an interactive map generalization system. 
Independent building simplification gets some achievements. 
Building cluster generalization belongs to high level research 
facing challenges. The representation and automatic recognition 
of spatial distribution pattern is the first question to be resolved. 
References 
[1] Ai, T. , Guo, R. and Liu, Y. “ A Binary Tree Representation of 
Bend Hierarchical Structure Based on Gestalt Principles”, 
Proceedings of the 9 th International Symposium on Spatial 
Data Handling, Beijing, pp2a43-56, 2000. 
[2] Ai, T. and R. Z. Guo (2000): A Constrained Delaunay 
Partitioning of Areal Objects to Support Map Generalization, 
Journal of Wuhan Technical University of Surveying and 
Mapping 25(1 ):35-41 ,(in Chinese). 
[3] Bader, M. and R. Weibel (1997): Detecting and Resolving 
Size and Proximity Conflicts in the Generalization of 
Polygonal Maps, Proceedings of the 18 th ICC, Stockholm, 
Sweden, Vol. 3: 1525-1532. 
[4] Christensen, H. J. Albert (1999): Cartographic Line 
Generalization with Waterlines and Medial-Axes, 
Cartography and Geographic Information Science, 
26(1 ):19-32. 
[5] Federico Thomas (1998): Generating Street Center-Lines 
From Vector City Maps , Cartography and Geographic 
Information Systems, 25(4):221-230. 
[6] Guo, R. Z. and T. H. Ai (2000): Simplification and Aggregation 
of Building Polygons in Automatic Map Generalization, 
Journal of Wuhan Technical University of Surveying and 
Mapping, 25(1 ):25-30 (in Chinese). 
[7] Heller, M.(1990): Triangulation Algorithm for Adaptive 
Terrain Modeling, Proceedings of the 4 th International 
Symposium on Spatial Data Handling, Zurich Swiss, 
International Geographical Union, 163-174. 
[8] Hernandez, D. and Clementini, E. (1995): Qualitative 
Distance, Proceedings of COSIT’95,Semmering, 
Austria:45-57. 
[9] Jones, C. B., Bundy, G. L. and J. M. Ware (1995): Map 
Generalization with a Triangulated Data Structure, 
Cartography and GIS, 22(4): 317-331. 
[10] Lee, D.(1999): New Cartographic Generalization Tools, 
CD-Rom Proceedings of 19 ,h ICC, Ottawa , Section 8. 
[11] Mackaness, W. A. and K. Beard (1993): Use of Graph 
Theory to Support Map Generalization, Cartography and 
Geographic Information Systems, 20(4):210-221. 
[12] Mackaness, W. A. 1994. An Algorithm for Conflict
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Chen, Jun. The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics. AIT, 2001.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fourth digit in the number series 987654321?:

I hereby confirm the use of my personal data within the context of the enquiry made.