Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Monograph

Persistent identifier:
856566209
Author:
Chen, Jun
Title:
The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
Sub title:
May 23 - 25, 2001, Bangkok, Thailand
Scope:
VI, 434 Seiten
Year of publication:
2001
Place of publication:
Pathumthani, Thailand
Publisher of the original:
AIT
Identifier (digital):
856566209
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
A SPATIO-TEMPORAL GEOGRAPHIC INFORMATION SYSTEM BASED ON IMPLICIT TOPOLOGY DESCRIPTION: STIMS. Yutaka OHSAWA, Atushi NAGASHIMA
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
  • Cover
  • ColorChart
  • Title page
  • PREFACE
  • Conference Venue
  • CONTENTS
  • DISTRIBUTION ANALYSIS AND AUTOMATIC GENERALIZATION OF URBAN BUILDING CLUSTER. Tinghua AI
  • GENERALIZATION FOR 3D GIS. Fengwen BAI, Xiaoyong CHEN
  • USING IKONOS HIGH RESOLUTION REMOTE SENSING DATA FOR LAND USE CLASSIFICATION IN CHINA. Georg BARETH
  • LARGE SCALE GIS FOR A SUBURBAN TOWNSHIP OF BEIJING TO MODEL STRATEGIES FOR SUSTAINABLE AGRICULTURE ON FIELD LEVEL. Georg BARETH, Si JIN, Tailai YAN and Reiner DOLUSCHITZ
  • THREE LEVEL HIERARCHICAL QUALITATIVE DESCRIPTIONS FOR DIRECTIONS OF SPATIAL OBJECTS. Han CAO, Jun CHEN, Daosheng Du
  • THE APPLICATION OF CENTROGRAPHIC ANALYSIS TO THE STUDY OF THE INTRA-URBAN MIGRATORY PHENOMENON IN THE GREATER MONCTON AREA IN CANADA, 1981-1996. Huhua CAO
  • PER-FIELD CLASSIFICATION INTEGRATING VERY FINE SPATIAL RESOLUTION SATELLITE IMAGERY WITH TOPOGRAPHIC DATA. Mauro CAPRIOLI, Eufemia TARANTINO
  • INTEGRATION OF GIS WITH PESTICIDES LOSSES RUNOFF MODEL. Bing CHEN, Gordon HUANG, Jonathan LI, Yueren LI, and Yifan LI
  • RESEARCH ON 3D CITY VISUALIZATION BASED ON INTERNET. Jing CHEN, Qingquan Ll, Jianya GONG, Bisheng YANG
  • DYNAMIC AND MULTI-DIMENSIONAL GIS: AN OVERVIEW. Jun CHEN, Zhilin LI, Jie JIANG
  • A GIS-SUPPORTED ENVIRONMENTAL RISK ASSESSMENT FOR PETROLEUM WASTE CONTAMINATED SITE. Su Chen, Gordon Huang, and Jonathan Li
  • MEASURING UNCERTAINTY IN SPATIAL FEATURES IN A THREE-DIMENSIONAL GEOGRAPHICAL INFORMATION SYSTEM. Chui Kwan CHEUNG and Wenzhong SHI
  • SPATIAL DEVELOPMENT RESEARCH OF LARGE CITY BASED ON GIS SPATIAL ANALYSIS. Anrong DANG, Qizhi MAO, Xiaodong WANG
  • DIGITAL CLOSE RANGE PHOTOGRAMMETRY: A POTENTIAL TOOL FOR LAND FEATURE PRESENTATION. Gang DENG
  • 3D SPATIAL OBJECTS MODELING AND VISUALIZATION BASED ON LASER LANGE DATA. Jie DU, Apisit EIUMNOH, Xiaoyang CHEN, Michiro KUSANAGI
  • 3D REPRESENTATION AND SIMULATION OF MINING SUBSIDING LAND BASED ON GIS, DPS AND GPS. Peijun DU, Dazhi GUO and Qihao WENG
  • USE DSM/DTM TO SUPPORT CHANGE DETECTION OF BUILDING IN URBAN AREA. Hong FAN, Jianqing ZHANG, Zuxun ZHANG, Zhifang LIU
  • ENHANCE MANAGEMENT LEVEL OF URBAN WATER SUPPLY DEPARTMENT WITH 3S TECHNOLOGY. Yewen FAN and Wei WANG
  • AUTOMATIC REGISTRATION OF SATELLITE IMAGE TO MAP. Kensaku FUJII
  • DIFFERENTIAL SATELLITE POSITIONING OVER INTERNET. Ying. GAO and Zhi. LIU
  • FEDERATED SPATIAL DATABASES AND INTEROPERABILITY. Jianya GONG, Yandong WANG
  • OPTIMIZING PATH FINDING IN VEHICLE NAVIGATION CONSIDERING TURN PENALTIES AND PROHIBITIONS. Gang HAN, Jie JANG, Jun CHEN
  • DEVELOPMENT OF DYNAMIC MANAGEMENT SPATIAL-TEMPORAL INFORMATION SYSTEM AND APPLICATION FOR CENSUS DATA- TOWARD ASIAN SPATIAL TEMPORAL GIS (ST-GIS) (2)-. Michinori HATAYAMA, Shigeru KAKUMOTO, Hiroyuki KAMEDA
  • MODELING LAND USE EFFECT ON URBAN STORM RUNOFF AT THE WATERSHED SCALE. Chansheng HE
  • EXTRACTION OF THE SEA OIL INFORMATION FROM TM AND AVHRR IMAGE BY THE METHOD OF FEATURE DATA LINE -WINDOW. Fengrong HUANG
  • THE APPLICATION OF NEURAL NETWORK AND FUZZY SET TO CLASSIFICATION OF REMOTELY SENSED IMAGERY. Dongmin HUO, Jingxiong ZHANG, Jiabing SUN
  • A SELF-ADAPTIVE ALGORITHM OF AUTOMATIC INTERIOR ORIENTATION FOR METRIC IMAGES. Wanshou JIANG, Guo ZHANG, Deren LI
  • DETECTION OF SHEER CHANGES IN AERIAL PHOTO IMAGES USING AN ADAPTIVE NONLINEAR MAPPING. Yukio KOSUGI, Munenori FUKUNISHI, Mitsuteru SAKAMATO, Wei LU and Takeshi DOIHARA
  • EFFECTIVENESS OF MENU-DRIVEN VS. SCRIPT-BASED GIS TUTORIAL SYSTEMS. Bin LI
  • BUILDING OF B/S-BASED OBJECT ORIENTED ELECTRONIC CHART DATABASE. Guangru LI, Shaopeng SUN, Depeng ZHAO
  • MINE GIS 3D DATA MODEL AND SOME THINKING. Q. Y. LI, D. Y. CAO, X. D. ZHU
  • THE RESEARCH OF THE INFINITELY VARIABLE MAP SCALE IN GIS. Yifan LI, Shaopeng SUN
  • RESEARCH ON INFORMATION AUTOMATIC GENERALIZATION WITH VARYING MAP SCALE. Yuanhui LI, Dan LIU, Yifan LI
  • QUANTITATIVE MEASURES FOR SPATIAL INFORMATION OF MAPS. Zhilin LI and Peizhi HUANG
  • AN ALGEBRA FOR SPATIAL RELATIONS. Zhilin LI, Renliang ZHAO and Jun CHEN
  • A STUDY ON THE EXTRACTION OF DEM FROM SINGLE SAR IMAGE. Mingsheng LIAO, Jie YANG, Hui LIN
  • A GIS-BASED ENVIRONMENTAL DECISION SUPPORT SYSTEM FOR THE ERHAI LAKE WATERSHED MANAGEMENT. Lei LIU, Gordon HUANG, and Jonathan LI
  • APPLICATION OF 4D AND ASSOCIATED ENABLING TECHNOLOGIES FOR URBAN DECISION SUPPORT SYSTEM. Rong LIU, Penggen CHENG, Zhuguo XING, Kaiyun LU
  • 3D RECONSTRUCTION OF A BUILDING FROM SINGLE IMAGE. Yawen LIU, Zuxun ZHANG, Jianqing ZHANG
  • AN INTELLIGENT GIS SEARCH ENGINE TO RETRIEVE INFORMATION FROM INTERNET. Zhe LIU, Yong GAO
  • AN ENHANCED TIN GENERATION METHOD FOR USING CONTOUR LINE AS CONSTRAINS. Wei LU, Takeshi DOIHARA
  • NON-LINEAR RECTIFICATION OF MAP WITH COLLINEAR CONSTRAIN. Wei LU, Takeshi DOIHARA
  • A STUDY ON VEHICLE POINT CORRECTING ALGORITHM IN GPS/AVL SYSTEMS. HongShan NIU, Jie XU, Hong LI
  • A SPATIO-TEMPORAL GEOGRAPHIC INFORMATION SYSTEM BASED ON IMPLICIT TOPOLOGY DESCRIPTION: STIMS. Yutaka OHSAWA, Atushi NAGASHIMA
  • APPLICATION OF VRML IN A DYNAMIC AND MULTI-DIMENSIONAL DIGITAL HARBOR. Mingyang PAN, Yifan LI, Depeng ZHAO
  • A COMMON DATA MODEL AND REQUESTING LANGUAGE FOR SPATIAL INFORMATION MARKETPLACES. Matthew Y. C. PANG, Wenzhong SHI, Geoffrey SHEA
  • TOPOLOGIC DATA STRUCTURE FOR A 3D GIS. Mattias Pfund
  • AUTOMATIC RECOGNITION AND LOCATION OF ROAD SIGNS FROM TERRESTERIAL COLOR IMAGERY. Sompoch PUNTAVUNGKOUR, Xiaoyang CHEN, Michiro KUSANAGI
  • A NEW STEREO MATCHING APPROACH USING EDGES AND NONLINEAR MATCHING PROCESS OBJECTED FOR URBAN AREA. Mitsuteru SAKAMOTO, Wei LU, Pingtao WANG
  • MINING SEQUENTIAL PATTERN FROM GEOSPATIAL DATA. Yin SHAN
  • THE ADVANCED GIS AND GPS TECHNOLOGIES TO BE USED IN THE LANCHANG BASIN AREA OF YUNNAN PROVINCE OF CHINA. Kun SHI
  • PRIMARY SPATIAL CHANGES. Hong SHU, Christopher GOLD and Jun CHEN
  • INCORPORATING 3D GEO-OBJECTS INTO AN EXISTING 2D GEO-DATABASE: AN EFFICIENT USE OF GEO-DATA. Jantien STOTER, Peter VAN OOSTEROM
  • A FRAMEWORK FOR AUTOMATED CHANGE DETECTION SYSTEM. Haigang SUI, Deren LI, Jianya GONG
  • BUILDING DISTRIBUTED GEOGRAPHIC INFORMATION SYSTEM FOR OCEAN TRANSPORTATION (GIS-OT). Shaopeng SUN, Guangru LI, Depeng ZHAO
  • COMPUTATION OF ACCURACY ASSESSMENT IN THE INTEGRATION OF PHOTOGRAPH AND LASER DATA. Taravudh TIPDECHO & Xiaoyong CHEN
  • PROXIMITY AND ACCESSIBILITY TO SUITABLE JOBS AMONG WORKERS OF VARIOUS WAGE GROUPS. Fahui WANG
  • WEB MAPPING WITH GEOGRAPHY MARKUP LANGUAGE. Xingling WANG, Chongjun YANG, Donglin LIU
  • INTEGRATION OF COMPACTNESS MEASUREMENT METHODS USING FUZZY MULTICRITERIA DECISION MAKING : A NEW APPROACH FOR COMPACTNESS MEASUREMENT IN SHAPE BASED REDISTRICTING ALGORITHM. Yinchai WANG
  • GIS-BASED SYSTEM FOR RAINFALL ESTIMATION USING RAINGAUGE DATA: A PROTOTYPE. Yinchai WANG, Teck Kiong SIEW
  • A NEW APPROACH FOR DISTRIBUTED GIS. Yuxiang WANG, Chongjun YANG, Donglin LIU
  • GEOD2D: A FLEXIBLE SOLUTION FOR GIS DATA EXCHANGE BASED ON COM. Huayi WU, Xinyan ZHU
  • GEOLOGICAL DATA ORGANIZATION FOR FEM BASED ON 3D GEOSCIENCE MODELING. Lixin WU, Enke HOU, Chunan TANG
  • DIGITAL MODEL AND GPS BASED PATH REPRESENTATION AND OPTIMIZATION. Linyuan XIA
  • AN COMPOSITE TEMPORAL DATA MODEL IN CADASTRAL INFORMATION SYSTEM. Changsheng XUE, Qingquan LI, and Bisheng YANG, Yuanchun HUA, Shiwu XU
  • A SPATIAL-TEMPORAL DATA MODEL FOR MOVING AREA PHENOMENA. Shanzhen Yl, Yong ZHONG, Lizhu ZHOU, Jun CHEN, Qilun LIU
  • CONSTRUCTION OF 3D MODELS FOR ELEVATED OBJECTS IN URBAN AREAS USING AIRBORNE SAR POLARIMETRIC DATA. Yalkun YUSUF, Masashl MATSUOKA, Fumio YAMAZAKI, Seiho URATSUKA, Tatsuharu KOBAYASHI, Makoto SATAKE
  • COASTAL GIS: FUNCTIONALITY VERSUS APPLICATIONS. Thomas Q ZENG, Qiming ZHOU, Peter COWELL and Haijun HUANG
  • CIS AIDED CHARACTERIZATION OF SOIL AND GROUNDWATER ARSENIC CONTAMINATION IN SOUTHERN THAILAND. Jianjun ZHANG, Xiaoyong CHEN, Preeda PARKPIAN, Monthip Sriratana TABUCANON, Janewit WONGSANOON, Kensuke FUKUSHI, Skorn MONGKOLSUK and N.C.THANH
  • MULTIRESOLUTION TERRIAN MODEL. Jin ZHANG
  • A TROUS WAVELET DECOMPOSITION APPLIED TO DETECTING IMAGE EDGE. Xiaodong ZHANG, Deren LI
  • RESEARCH OF THE LAND MANAGEMENT INFORMATION SYSTEM BASED ON WEB GIS AND SPATIAL DATABASES FOR PROVINCIAL AND LOCAL GOVERNMENTS IN CHINA. Junsan ZHAO, Yaolong ZHAO, Qiaogui ZHAO and Tao WEI
  • ANALYSING BRANCH BANK CLOSURES USING GIS AND THE SMART MODEL. Lihua ZHAO, Barry J. GARMER
  • QTM-BASED ALGORITHM FOR THE GENERATING OF VORONOI DIAGRAM FOR SPHERICAL OBJECTS. Xuesheng ZHAO, Jun CHEN
  • MODELING AND LANDSCAPE OF HIGHWAY CAD. Jiaqing ZHENG, Xi’an ZHAO, Chujiang CHEN
  • ASSISTING THE DEVELOPMENT OF KNOWLEDGE FOR PREDICTIVE MAPPING USING A FUZZY C-MEANS CLASSIFICATION. A-Xing ZHU, Edward ENGLISH
  • THE DESIGN AND IMPLEMENTATION OF CYBERCITY GIS (CCGIS). Qing ZHU, Deren LI, Yeting ZHANG, Hanjiang XIONG
  • 3D COMPUTER SIMULATION OF ANCIENT CHINESE TIMBER BUILDINGS. Yixuan ZHU, Jie YANG, Deren LI
  • 3D MODELLING FOR AUGMENTED REALITY. Siyka ZLATANOVA
  • THE DESIGN OF SPATIAL DATA WAREHOUSE. Yijiang ZOU
  • AUTHOR INDEX
  • Cover

Full text

ISPRS, Vol.34, Part 2W2, “Dynamic and Multi-Dimensional GIS”, Bangkok, May 23-25, 2001 
Copy (1) 
Fig.6 Steps of spatio-temporal retrieval 
4. SPATIOTEMPORAL RETRIEVALS 
In GIS which deals with discrete temporal events, the types of 
retrievals are categorized to the following: 
(1) Spatial retrieval of the present data 
(2) Spatial retrieval of a specified time data 
(3) Detection of the difference between two specified times. 
The first type of retrieval is not temporal retrieval. Conventional 
GISes usually execute this type retrieval. The proposed data 
structure can execute the retrieval by simply not using the 
extension for temporal data, as described in [10]. There is no 
retrieval time loss by the extension. In the following two 
subsections, the other two types of retrievals are described. 
4.1 Expansion of GBD-tree for temporal data 
Basic idea how to manage spatio-temporal data is described in 
[10]. The method uses geographic differential script file (GDSF) to 
record past data. Then, this paper describes about abstract 
feature of the data structure. The largest difference between the 
original GBD-tree and the structure for spatio-temporal data is the 
latter has a priority queue attached to every leaf node to store past 
data. 
GBD-tree uses different mechanisms when to register data and 
retrieve data. The characteristic is very important when to insert 
temporal data. The leaf node in which the temporal data is to be 
inserted is determined depending on the center position of the 
data. On the other hand, the node is not determined uniquely on 
R-tree and its successors because the data are divided by the 
shape of the MBR at the time that the division is invoked. 
The priority of the queue is ordered by the time print from new to 
old. To distinguish the MBR of temporal data from that of present 
data, the MBR of the present data is denoted as MBRp, and the 
MBR of the temporal data is denoted as MBRt. 
Retrieval from the queue is also required in order to restore the 
old timed data, In order to avoid omission of temporal data during 
spatial retrieval, each node of the GBD tree has the MBR of 
temporal data. When restoring the map of a specific date, spatial 
retrieval is executed, referencing the MBR of temporal data 
attached to each node. If the MBR of temporal data overlaps the 
specified retrieval area and if the node is a leaf node, then the 
queue storing temporal data is reviewed and applied to the 
command that is controlling the current data set. 
4.2 Spatial retrieval of specified time data 
The most typical spatial retrieval is range retrieval. Other spatial 
retrieval (for example, to find nearest neighbor) can also be 
executed by a combination of range retrieval. The following 
describes how to do range retrieval on the proposed data 
structure. 
First, retrieval of the present data is done by the usual method of 
searching the GBD tree. Specifically, the overlap between the 
specified retrieval area and the MBRp on each node is inspected. 
If these two are overlapping, descend the tree and repeat the 
same check for all the child nodes. If the node is a leaf node, 
select the entities actually included in the specified range and add 
the entities to the result set. In this searching process, there is no 
overhead time caused by adding temporal information to the tree 
structure. 
When a particular time (old date) is specified outside of the 
retrieval range, the priority queues attached to the leaf nodes are 
inspected. Range retrieval of a specified time is executed by the 
following steps, let the specified time be T and the specified range 
be R. 
(1) empty the result set S. 
(2) check whether MBRp or MBRt overlaps with R 
(3) if they are overlapping and the node is not a leaf node, 
descend the tree and repeat the check for all child nodes. 
(4) if they are overlapping and the node is a leaf node, copy the 
data in the leaf node to a working space W. 
(5) apply the GDSF commands attached to the node whose time 
print is not older than T. 
This operation is executed on the data in the working space W. 
Add the result of W to S. 
Fig.6 summarizes the steps of temporal retrieval. Every leaf node 
consists of two parts, the present data and the historical data 
queue. After having reached a leaf node, the present data part is 
copied to a working space W. Then the GDSF commands are 
applied until specified time. The contents in W are modified to the 
states of the specified time. Finally, spatial retrieval is performed 
on W. 
The most important points of the method are in step 5. The first 
point is that the range retrieval with specified time is executed on 
a working space W, and there are no effects on the spatial data 
stored in the GBD tree. The second is that the influence of the 
operations by the GDSF commands is restricted within each leaf 
node. For example, a command to insert an entity has no effect on 
the other leaf nodes. When there is an insertion command on a 
priority queue of a leaf node, execution of this command has no 
effect on the results of the operation on the other nodes. In 
addition, if there is a deletion command on a priority queue of a 
leaf node, the object must exist on the same leaf node, because 
the GBD tree distributes entities to individual leaf nodes according 
to the center points. Also, deletion commands have no effect on 
other leaf nodes. 
4.3 Detection of the difference between two specified times 
The comparison of two specified points in time is a frequently 
requested operation in spatiotemporal GIS. The proposed data 
structure can execute this type of operation easily. 
Let two specified points in time be t1 and t2 (t1 < t2: t1 is older 
than t2). This type of retrieval, the step (1) in Fig.6 is not 
necessary, because the state of the present has no effect on the 
result. Fist, skip the historical data queue until the time print is
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Chen, Jun. The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics. AIT, 2001.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fifth month of the year?:

I hereby confirm the use of my personal data within the context of the enquiry made.