Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Monograph

Persistent identifier:
856566209
Author:
Chen, Jun
Title:
The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
Sub title:
May 23 - 25, 2001, Bangkok, Thailand
Scope:
VI, 434 Seiten
Year of publication:
2001
Place of publication:
Pathumthani, Thailand
Publisher of the original:
AIT
Identifier (digital):
856566209
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
TOPOLOGIC DATA STRUCTURE FOR A 3D GIS. Mattias Pfund
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
  • Cover
  • ColorChart
  • Title page
  • PREFACE
  • Conference Venue
  • CONTENTS
  • DISTRIBUTION ANALYSIS AND AUTOMATIC GENERALIZATION OF URBAN BUILDING CLUSTER. Tinghua AI
  • GENERALIZATION FOR 3D GIS. Fengwen BAI, Xiaoyong CHEN
  • USING IKONOS HIGH RESOLUTION REMOTE SENSING DATA FOR LAND USE CLASSIFICATION IN CHINA. Georg BARETH
  • LARGE SCALE GIS FOR A SUBURBAN TOWNSHIP OF BEIJING TO MODEL STRATEGIES FOR SUSTAINABLE AGRICULTURE ON FIELD LEVEL. Georg BARETH, Si JIN, Tailai YAN and Reiner DOLUSCHITZ
  • THREE LEVEL HIERARCHICAL QUALITATIVE DESCRIPTIONS FOR DIRECTIONS OF SPATIAL OBJECTS. Han CAO, Jun CHEN, Daosheng Du
  • THE APPLICATION OF CENTROGRAPHIC ANALYSIS TO THE STUDY OF THE INTRA-URBAN MIGRATORY PHENOMENON IN THE GREATER MONCTON AREA IN CANADA, 1981-1996. Huhua CAO
  • PER-FIELD CLASSIFICATION INTEGRATING VERY FINE SPATIAL RESOLUTION SATELLITE IMAGERY WITH TOPOGRAPHIC DATA. Mauro CAPRIOLI, Eufemia TARANTINO
  • INTEGRATION OF GIS WITH PESTICIDES LOSSES RUNOFF MODEL. Bing CHEN, Gordon HUANG, Jonathan LI, Yueren LI, and Yifan LI
  • RESEARCH ON 3D CITY VISUALIZATION BASED ON INTERNET. Jing CHEN, Qingquan Ll, Jianya GONG, Bisheng YANG
  • DYNAMIC AND MULTI-DIMENSIONAL GIS: AN OVERVIEW. Jun CHEN, Zhilin LI, Jie JIANG
  • A GIS-SUPPORTED ENVIRONMENTAL RISK ASSESSMENT FOR PETROLEUM WASTE CONTAMINATED SITE. Su Chen, Gordon Huang, and Jonathan Li
  • MEASURING UNCERTAINTY IN SPATIAL FEATURES IN A THREE-DIMENSIONAL GEOGRAPHICAL INFORMATION SYSTEM. Chui Kwan CHEUNG and Wenzhong SHI
  • SPATIAL DEVELOPMENT RESEARCH OF LARGE CITY BASED ON GIS SPATIAL ANALYSIS. Anrong DANG, Qizhi MAO, Xiaodong WANG
  • DIGITAL CLOSE RANGE PHOTOGRAMMETRY: A POTENTIAL TOOL FOR LAND FEATURE PRESENTATION. Gang DENG
  • 3D SPATIAL OBJECTS MODELING AND VISUALIZATION BASED ON LASER LANGE DATA. Jie DU, Apisit EIUMNOH, Xiaoyang CHEN, Michiro KUSANAGI
  • 3D REPRESENTATION AND SIMULATION OF MINING SUBSIDING LAND BASED ON GIS, DPS AND GPS. Peijun DU, Dazhi GUO and Qihao WENG
  • USE DSM/DTM TO SUPPORT CHANGE DETECTION OF BUILDING IN URBAN AREA. Hong FAN, Jianqing ZHANG, Zuxun ZHANG, Zhifang LIU
  • ENHANCE MANAGEMENT LEVEL OF URBAN WATER SUPPLY DEPARTMENT WITH 3S TECHNOLOGY. Yewen FAN and Wei WANG
  • AUTOMATIC REGISTRATION OF SATELLITE IMAGE TO MAP. Kensaku FUJII
  • DIFFERENTIAL SATELLITE POSITIONING OVER INTERNET. Ying. GAO and Zhi. LIU
  • FEDERATED SPATIAL DATABASES AND INTEROPERABILITY. Jianya GONG, Yandong WANG
  • OPTIMIZING PATH FINDING IN VEHICLE NAVIGATION CONSIDERING TURN PENALTIES AND PROHIBITIONS. Gang HAN, Jie JANG, Jun CHEN
  • DEVELOPMENT OF DYNAMIC MANAGEMENT SPATIAL-TEMPORAL INFORMATION SYSTEM AND APPLICATION FOR CENSUS DATA- TOWARD ASIAN SPATIAL TEMPORAL GIS (ST-GIS) (2)-. Michinori HATAYAMA, Shigeru KAKUMOTO, Hiroyuki KAMEDA
  • MODELING LAND USE EFFECT ON URBAN STORM RUNOFF AT THE WATERSHED SCALE. Chansheng HE
  • EXTRACTION OF THE SEA OIL INFORMATION FROM TM AND AVHRR IMAGE BY THE METHOD OF FEATURE DATA LINE -WINDOW. Fengrong HUANG
  • THE APPLICATION OF NEURAL NETWORK AND FUZZY SET TO CLASSIFICATION OF REMOTELY SENSED IMAGERY. Dongmin HUO, Jingxiong ZHANG, Jiabing SUN
  • A SELF-ADAPTIVE ALGORITHM OF AUTOMATIC INTERIOR ORIENTATION FOR METRIC IMAGES. Wanshou JIANG, Guo ZHANG, Deren LI
  • DETECTION OF SHEER CHANGES IN AERIAL PHOTO IMAGES USING AN ADAPTIVE NONLINEAR MAPPING. Yukio KOSUGI, Munenori FUKUNISHI, Mitsuteru SAKAMATO, Wei LU and Takeshi DOIHARA
  • EFFECTIVENESS OF MENU-DRIVEN VS. SCRIPT-BASED GIS TUTORIAL SYSTEMS. Bin LI
  • BUILDING OF B/S-BASED OBJECT ORIENTED ELECTRONIC CHART DATABASE. Guangru LI, Shaopeng SUN, Depeng ZHAO
  • MINE GIS 3D DATA MODEL AND SOME THINKING. Q. Y. LI, D. Y. CAO, X. D. ZHU
  • THE RESEARCH OF THE INFINITELY VARIABLE MAP SCALE IN GIS. Yifan LI, Shaopeng SUN
  • RESEARCH ON INFORMATION AUTOMATIC GENERALIZATION WITH VARYING MAP SCALE. Yuanhui LI, Dan LIU, Yifan LI
  • QUANTITATIVE MEASURES FOR SPATIAL INFORMATION OF MAPS. Zhilin LI and Peizhi HUANG
  • AN ALGEBRA FOR SPATIAL RELATIONS. Zhilin LI, Renliang ZHAO and Jun CHEN
  • A STUDY ON THE EXTRACTION OF DEM FROM SINGLE SAR IMAGE. Mingsheng LIAO, Jie YANG, Hui LIN
  • A GIS-BASED ENVIRONMENTAL DECISION SUPPORT SYSTEM FOR THE ERHAI LAKE WATERSHED MANAGEMENT. Lei LIU, Gordon HUANG, and Jonathan LI
  • APPLICATION OF 4D AND ASSOCIATED ENABLING TECHNOLOGIES FOR URBAN DECISION SUPPORT SYSTEM. Rong LIU, Penggen CHENG, Zhuguo XING, Kaiyun LU
  • 3D RECONSTRUCTION OF A BUILDING FROM SINGLE IMAGE. Yawen LIU, Zuxun ZHANG, Jianqing ZHANG
  • AN INTELLIGENT GIS SEARCH ENGINE TO RETRIEVE INFORMATION FROM INTERNET. Zhe LIU, Yong GAO
  • AN ENHANCED TIN GENERATION METHOD FOR USING CONTOUR LINE AS CONSTRAINS. Wei LU, Takeshi DOIHARA
  • NON-LINEAR RECTIFICATION OF MAP WITH COLLINEAR CONSTRAIN. Wei LU, Takeshi DOIHARA
  • A STUDY ON VEHICLE POINT CORRECTING ALGORITHM IN GPS/AVL SYSTEMS. HongShan NIU, Jie XU, Hong LI
  • A SPATIO-TEMPORAL GEOGRAPHIC INFORMATION SYSTEM BASED ON IMPLICIT TOPOLOGY DESCRIPTION: STIMS. Yutaka OHSAWA, Atushi NAGASHIMA
  • APPLICATION OF VRML IN A DYNAMIC AND MULTI-DIMENSIONAL DIGITAL HARBOR. Mingyang PAN, Yifan LI, Depeng ZHAO
  • A COMMON DATA MODEL AND REQUESTING LANGUAGE FOR SPATIAL INFORMATION MARKETPLACES. Matthew Y. C. PANG, Wenzhong SHI, Geoffrey SHEA
  • TOPOLOGIC DATA STRUCTURE FOR A 3D GIS. Mattias Pfund
  • AUTOMATIC RECOGNITION AND LOCATION OF ROAD SIGNS FROM TERRESTERIAL COLOR IMAGERY. Sompoch PUNTAVUNGKOUR, Xiaoyang CHEN, Michiro KUSANAGI
  • A NEW STEREO MATCHING APPROACH USING EDGES AND NONLINEAR MATCHING PROCESS OBJECTED FOR URBAN AREA. Mitsuteru SAKAMOTO, Wei LU, Pingtao WANG
  • MINING SEQUENTIAL PATTERN FROM GEOSPATIAL DATA. Yin SHAN
  • THE ADVANCED GIS AND GPS TECHNOLOGIES TO BE USED IN THE LANCHANG BASIN AREA OF YUNNAN PROVINCE OF CHINA. Kun SHI
  • PRIMARY SPATIAL CHANGES. Hong SHU, Christopher GOLD and Jun CHEN
  • INCORPORATING 3D GEO-OBJECTS INTO AN EXISTING 2D GEO-DATABASE: AN EFFICIENT USE OF GEO-DATA. Jantien STOTER, Peter VAN OOSTEROM
  • A FRAMEWORK FOR AUTOMATED CHANGE DETECTION SYSTEM. Haigang SUI, Deren LI, Jianya GONG
  • BUILDING DISTRIBUTED GEOGRAPHIC INFORMATION SYSTEM FOR OCEAN TRANSPORTATION (GIS-OT). Shaopeng SUN, Guangru LI, Depeng ZHAO
  • COMPUTATION OF ACCURACY ASSESSMENT IN THE INTEGRATION OF PHOTOGRAPH AND LASER DATA. Taravudh TIPDECHO & Xiaoyong CHEN
  • PROXIMITY AND ACCESSIBILITY TO SUITABLE JOBS AMONG WORKERS OF VARIOUS WAGE GROUPS. Fahui WANG
  • WEB MAPPING WITH GEOGRAPHY MARKUP LANGUAGE. Xingling WANG, Chongjun YANG, Donglin LIU
  • INTEGRATION OF COMPACTNESS MEASUREMENT METHODS USING FUZZY MULTICRITERIA DECISION MAKING : A NEW APPROACH FOR COMPACTNESS MEASUREMENT IN SHAPE BASED REDISTRICTING ALGORITHM. Yinchai WANG
  • GIS-BASED SYSTEM FOR RAINFALL ESTIMATION USING RAINGAUGE DATA: A PROTOTYPE. Yinchai WANG, Teck Kiong SIEW
  • A NEW APPROACH FOR DISTRIBUTED GIS. Yuxiang WANG, Chongjun YANG, Donglin LIU
  • GEOD2D: A FLEXIBLE SOLUTION FOR GIS DATA EXCHANGE BASED ON COM. Huayi WU, Xinyan ZHU
  • GEOLOGICAL DATA ORGANIZATION FOR FEM BASED ON 3D GEOSCIENCE MODELING. Lixin WU, Enke HOU, Chunan TANG
  • DIGITAL MODEL AND GPS BASED PATH REPRESENTATION AND OPTIMIZATION. Linyuan XIA
  • AN COMPOSITE TEMPORAL DATA MODEL IN CADASTRAL INFORMATION SYSTEM. Changsheng XUE, Qingquan LI, and Bisheng YANG, Yuanchun HUA, Shiwu XU
  • A SPATIAL-TEMPORAL DATA MODEL FOR MOVING AREA PHENOMENA. Shanzhen Yl, Yong ZHONG, Lizhu ZHOU, Jun CHEN, Qilun LIU
  • CONSTRUCTION OF 3D MODELS FOR ELEVATED OBJECTS IN URBAN AREAS USING AIRBORNE SAR POLARIMETRIC DATA. Yalkun YUSUF, Masashl MATSUOKA, Fumio YAMAZAKI, Seiho URATSUKA, Tatsuharu KOBAYASHI, Makoto SATAKE
  • COASTAL GIS: FUNCTIONALITY VERSUS APPLICATIONS. Thomas Q ZENG, Qiming ZHOU, Peter COWELL and Haijun HUANG
  • CIS AIDED CHARACTERIZATION OF SOIL AND GROUNDWATER ARSENIC CONTAMINATION IN SOUTHERN THAILAND. Jianjun ZHANG, Xiaoyong CHEN, Preeda PARKPIAN, Monthip Sriratana TABUCANON, Janewit WONGSANOON, Kensuke FUKUSHI, Skorn MONGKOLSUK and N.C.THANH
  • MULTIRESOLUTION TERRIAN MODEL. Jin ZHANG
  • A TROUS WAVELET DECOMPOSITION APPLIED TO DETECTING IMAGE EDGE. Xiaodong ZHANG, Deren LI
  • RESEARCH OF THE LAND MANAGEMENT INFORMATION SYSTEM BASED ON WEB GIS AND SPATIAL DATABASES FOR PROVINCIAL AND LOCAL GOVERNMENTS IN CHINA. Junsan ZHAO, Yaolong ZHAO, Qiaogui ZHAO and Tao WEI
  • ANALYSING BRANCH BANK CLOSURES USING GIS AND THE SMART MODEL. Lihua ZHAO, Barry J. GARMER
  • QTM-BASED ALGORITHM FOR THE GENERATING OF VORONOI DIAGRAM FOR SPHERICAL OBJECTS. Xuesheng ZHAO, Jun CHEN
  • MODELING AND LANDSCAPE OF HIGHWAY CAD. Jiaqing ZHENG, Xi’an ZHAO, Chujiang CHEN
  • ASSISTING THE DEVELOPMENT OF KNOWLEDGE FOR PREDICTIVE MAPPING USING A FUZZY C-MEANS CLASSIFICATION. A-Xing ZHU, Edward ENGLISH
  • THE DESIGN AND IMPLEMENTATION OF CYBERCITY GIS (CCGIS). Qing ZHU, Deren LI, Yeting ZHANG, Hanjiang XIONG
  • 3D COMPUTER SIMULATION OF ANCIENT CHINESE TIMBER BUILDINGS. Yixuan ZHU, Jie YANG, Deren LI
  • 3D MODELLING FOR AUGMENTED REALITY. Siyka ZLATANOVA
  • THE DESIGN OF SPATIAL DATA WAREHOUSE. Yijiang ZOU
  • AUTHOR INDEX
  • Cover

Full text

ISPRS, Vol.34, Part 2W2, “Dynamic and Multi-Dimensional GIS”, Bangkok, May 23-25, 2001 
234 
aquisition, CAD is normally used for refining existing 3D data. 
The GIS method follows a totally different approach. Starting 
with huge quantities of existing 2D data, 3D objects are 
computed, using adaptive data structures: Two dimensional 
information (existing GIS data, digitized maps, orthophotos, 
etc.) combined with information about the altitude of the 
ground level where an object is placed (DTM) and joined with 
information about the height of an object (the third dimension) 
or more detailed data about their 3D shape (Pfund&Carosio 
1999). The advatage of this method is, that a 3D object always 
correspond with its 2D original, so all attributes of a 2D-GIS 
object can be used in the 3D GIS. But the problem remains, 
that three dimensional objects are usually generated newly 
every time they are used. While this is quite handy for 'simple' 
objects which are stored two-dimensionally and a three- 
dimensional Symbol is applied at request, it limits the 
possibilities for handling more complex objects (e g. buildings) 
with individual shapes. 
2.2 Data Analysis and Output 
3D vizualisation is a task, most systems have solved the one 
or other way. One can observe different solutions, ranging 
from rather static 3D views to VRML applications and to 
spcialized frontends like ESRI’s Spatial Analyst. 
On the other hand is all systems widely common, that they do 
support only few analysis functionality if any at all. You allways 
can perform some visual analysis on a 3D output like the 
estimation of the impact of a new building on the environment, 
but others are often lacking, e g. distance functions in the third 
dimension, overlay operations, mathematical operations like 
buffering, volume and surface area calculations or other 
specific capabilities (Giger&Loidold 2001). 
Concluding, one can say that today most applications and data 
structures for 3D geodata are optimised for visualisation 
Normally they omit GIS relevant information not needed for a 
visualisation as for example topology or thematic attributes 
other than texture or symbolisation. Mainly in order to get a 
better performance but also to limit the complexity of systems. 
As consequence of these simplifications the funcionality 
available is usually limited to pure visualisation and data 
aquisition while possibilities for data management and analysis 
are missing to a large extent. If however the entire spectrum of 
Constructive Solid Geometry 
Fig. 2: Basic geometric modelling concepts for 3D-GIS: Spatial 
Enumeration, CSG and B-Rep. 
functionality we know from 2D GIS (acquisition, administration, 
analysis and presentation) is to be available in a 3D GIS, we 
need an adequate geometric data structure. 
3 MODELLING CONCEPTS FOR 3D OBJECTS 
The geometrical data model is a very significant component of 
a 3D-GIS. While the basic modeling techniques for 
representing 3D-objects in computers are widely known and 
used for quite a long time in CAD applications, they were 
implemented only most recently and partially in GIS. However 
in order to take into account the special conditions of GIS the 
data models must be adapted. 
In order to be able to process real world objects in computers, 
they must be mapped into a data model. This mapping can 
only be achieved, like with 2D-GIS, by an abstraction of the 
real objects. This internal computer representation establishs 
in terms of a suitable memory structure and together with the 
appropriate algorithms the base for the applications. The goal 
of geometrical modelling is to describe and manage solid 
objects with high, respectively with to the requirements 
adapted quality. 
For the quality of the representation the following five criteria 
can be intended (Requita 1980, Streilein 1999): 
• Definition range 
• Completeness 
• Unambiguousness 
• Compactness 
• Efficiency 
Quantity of the objects, which 
can be represented 
Geometrical quality (accuracy, 
level of detail). 
An object is unique, if there 
exists to each object exactly one 
representation and to each 
representation exactly one 
object. 
Storage space needed. 
Computing time for creation, 
analyse and processing. 
These partially competing requests often require compromises 
during implementations, like the optimisation of storage 
volume and computing time. 
Due to different computer-internal representations and 
applicatoin ranges 3D computer models three classes can 
be distinguished: Wireframes, surface models and solid 
models. Because wireframes and surface models are unapt 
for modelling bodies (FTund.Carosio 1999, Pfund 1999) this 
paper only presents three different types of solid models all 
used in GIS applications. 
3.1 Solid Models 
The goal of solid models is, contrary to other 3D-models 
which often are only sutiable for special applications, to 
create generally applicable models. Because only „complete" 
representations of physical bodies are accepted, systems 
which use solid models are (theoretically) able to answer 
geometrical questions algorithmically whitout interactive 
intervention by a user. „Complete" means that it should not 
be possible to define bodies with missing surfaces. 
3.1.1 Spatial Enumeration 
With cell models solids are approximated by voxels of 
uniform size, the three-dimensional analogue to the pixel. 
The voxels are arranged in a regular spatial lattice and are 
computer-intemally represented by the coordinates of the 
center of the cell. An object is therefore an arrangement of 
neighbouring cells in the space. The resolution of the model 
is specified by the cell size. 
The representation of 3D objects with spatial enumeration is 
suitable for the calculation of volumes and other boolean 
operations (additions, subtractions) as well as for
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Chen, Jun. The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics. AIT, 2001.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

Which word does not fit into the series: car green bus train:

I hereby confirm the use of my personal data within the context of the enquiry made.