Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics

Monograph

Persistent identifier:
856566209
Author:
Chen, Jun
Title:
The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
Sub title:
May 23 - 25, 2001, Bangkok, Thailand
Scope:
VI, 434 Seiten
Year of publication:
2001
Place of publication:
Pathumthani, Thailand
Publisher of the original:
AIT
Identifier (digital):
856566209
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
PRIMARY SPATIAL CHANGES. Hong SHU, Christopher GOLD and Jun CHEN
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics
  • Cover
  • ColorChart
  • Title page
  • PREFACE
  • Conference Venue
  • CONTENTS
  • DISTRIBUTION ANALYSIS AND AUTOMATIC GENERALIZATION OF URBAN BUILDING CLUSTER. Tinghua AI
  • GENERALIZATION FOR 3D GIS. Fengwen BAI, Xiaoyong CHEN
  • USING IKONOS HIGH RESOLUTION REMOTE SENSING DATA FOR LAND USE CLASSIFICATION IN CHINA. Georg BARETH
  • LARGE SCALE GIS FOR A SUBURBAN TOWNSHIP OF BEIJING TO MODEL STRATEGIES FOR SUSTAINABLE AGRICULTURE ON FIELD LEVEL. Georg BARETH, Si JIN, Tailai YAN and Reiner DOLUSCHITZ
  • THREE LEVEL HIERARCHICAL QUALITATIVE DESCRIPTIONS FOR DIRECTIONS OF SPATIAL OBJECTS. Han CAO, Jun CHEN, Daosheng Du
  • THE APPLICATION OF CENTROGRAPHIC ANALYSIS TO THE STUDY OF THE INTRA-URBAN MIGRATORY PHENOMENON IN THE GREATER MONCTON AREA IN CANADA, 1981-1996. Huhua CAO
  • PER-FIELD CLASSIFICATION INTEGRATING VERY FINE SPATIAL RESOLUTION SATELLITE IMAGERY WITH TOPOGRAPHIC DATA. Mauro CAPRIOLI, Eufemia TARANTINO
  • INTEGRATION OF GIS WITH PESTICIDES LOSSES RUNOFF MODEL. Bing CHEN, Gordon HUANG, Jonathan LI, Yueren LI, and Yifan LI
  • RESEARCH ON 3D CITY VISUALIZATION BASED ON INTERNET. Jing CHEN, Qingquan Ll, Jianya GONG, Bisheng YANG
  • DYNAMIC AND MULTI-DIMENSIONAL GIS: AN OVERVIEW. Jun CHEN, Zhilin LI, Jie JIANG
  • A GIS-SUPPORTED ENVIRONMENTAL RISK ASSESSMENT FOR PETROLEUM WASTE CONTAMINATED SITE. Su Chen, Gordon Huang, and Jonathan Li
  • MEASURING UNCERTAINTY IN SPATIAL FEATURES IN A THREE-DIMENSIONAL GEOGRAPHICAL INFORMATION SYSTEM. Chui Kwan CHEUNG and Wenzhong SHI
  • SPATIAL DEVELOPMENT RESEARCH OF LARGE CITY BASED ON GIS SPATIAL ANALYSIS. Anrong DANG, Qizhi MAO, Xiaodong WANG
  • DIGITAL CLOSE RANGE PHOTOGRAMMETRY: A POTENTIAL TOOL FOR LAND FEATURE PRESENTATION. Gang DENG
  • 3D SPATIAL OBJECTS MODELING AND VISUALIZATION BASED ON LASER LANGE DATA. Jie DU, Apisit EIUMNOH, Xiaoyang CHEN, Michiro KUSANAGI
  • 3D REPRESENTATION AND SIMULATION OF MINING SUBSIDING LAND BASED ON GIS, DPS AND GPS. Peijun DU, Dazhi GUO and Qihao WENG
  • USE DSM/DTM TO SUPPORT CHANGE DETECTION OF BUILDING IN URBAN AREA. Hong FAN, Jianqing ZHANG, Zuxun ZHANG, Zhifang LIU
  • ENHANCE MANAGEMENT LEVEL OF URBAN WATER SUPPLY DEPARTMENT WITH 3S TECHNOLOGY. Yewen FAN and Wei WANG
  • AUTOMATIC REGISTRATION OF SATELLITE IMAGE TO MAP. Kensaku FUJII
  • DIFFERENTIAL SATELLITE POSITIONING OVER INTERNET. Ying. GAO and Zhi. LIU
  • FEDERATED SPATIAL DATABASES AND INTEROPERABILITY. Jianya GONG, Yandong WANG
  • OPTIMIZING PATH FINDING IN VEHICLE NAVIGATION CONSIDERING TURN PENALTIES AND PROHIBITIONS. Gang HAN, Jie JANG, Jun CHEN
  • DEVELOPMENT OF DYNAMIC MANAGEMENT SPATIAL-TEMPORAL INFORMATION SYSTEM AND APPLICATION FOR CENSUS DATA- TOWARD ASIAN SPATIAL TEMPORAL GIS (ST-GIS) (2)-. Michinori HATAYAMA, Shigeru KAKUMOTO, Hiroyuki KAMEDA
  • MODELING LAND USE EFFECT ON URBAN STORM RUNOFF AT THE WATERSHED SCALE. Chansheng HE
  • EXTRACTION OF THE SEA OIL INFORMATION FROM TM AND AVHRR IMAGE BY THE METHOD OF FEATURE DATA LINE -WINDOW. Fengrong HUANG
  • THE APPLICATION OF NEURAL NETWORK AND FUZZY SET TO CLASSIFICATION OF REMOTELY SENSED IMAGERY. Dongmin HUO, Jingxiong ZHANG, Jiabing SUN
  • A SELF-ADAPTIVE ALGORITHM OF AUTOMATIC INTERIOR ORIENTATION FOR METRIC IMAGES. Wanshou JIANG, Guo ZHANG, Deren LI
  • DETECTION OF SHEER CHANGES IN AERIAL PHOTO IMAGES USING AN ADAPTIVE NONLINEAR MAPPING. Yukio KOSUGI, Munenori FUKUNISHI, Mitsuteru SAKAMATO, Wei LU and Takeshi DOIHARA
  • EFFECTIVENESS OF MENU-DRIVEN VS. SCRIPT-BASED GIS TUTORIAL SYSTEMS. Bin LI
  • BUILDING OF B/S-BASED OBJECT ORIENTED ELECTRONIC CHART DATABASE. Guangru LI, Shaopeng SUN, Depeng ZHAO
  • MINE GIS 3D DATA MODEL AND SOME THINKING. Q. Y. LI, D. Y. CAO, X. D. ZHU
  • THE RESEARCH OF THE INFINITELY VARIABLE MAP SCALE IN GIS. Yifan LI, Shaopeng SUN
  • RESEARCH ON INFORMATION AUTOMATIC GENERALIZATION WITH VARYING MAP SCALE. Yuanhui LI, Dan LIU, Yifan LI
  • QUANTITATIVE MEASURES FOR SPATIAL INFORMATION OF MAPS. Zhilin LI and Peizhi HUANG
  • AN ALGEBRA FOR SPATIAL RELATIONS. Zhilin LI, Renliang ZHAO and Jun CHEN
  • A STUDY ON THE EXTRACTION OF DEM FROM SINGLE SAR IMAGE. Mingsheng LIAO, Jie YANG, Hui LIN
  • A GIS-BASED ENVIRONMENTAL DECISION SUPPORT SYSTEM FOR THE ERHAI LAKE WATERSHED MANAGEMENT. Lei LIU, Gordon HUANG, and Jonathan LI
  • APPLICATION OF 4D AND ASSOCIATED ENABLING TECHNOLOGIES FOR URBAN DECISION SUPPORT SYSTEM. Rong LIU, Penggen CHENG, Zhuguo XING, Kaiyun LU
  • 3D RECONSTRUCTION OF A BUILDING FROM SINGLE IMAGE. Yawen LIU, Zuxun ZHANG, Jianqing ZHANG
  • AN INTELLIGENT GIS SEARCH ENGINE TO RETRIEVE INFORMATION FROM INTERNET. Zhe LIU, Yong GAO
  • AN ENHANCED TIN GENERATION METHOD FOR USING CONTOUR LINE AS CONSTRAINS. Wei LU, Takeshi DOIHARA
  • NON-LINEAR RECTIFICATION OF MAP WITH COLLINEAR CONSTRAIN. Wei LU, Takeshi DOIHARA
  • A STUDY ON VEHICLE POINT CORRECTING ALGORITHM IN GPS/AVL SYSTEMS. HongShan NIU, Jie XU, Hong LI
  • A SPATIO-TEMPORAL GEOGRAPHIC INFORMATION SYSTEM BASED ON IMPLICIT TOPOLOGY DESCRIPTION: STIMS. Yutaka OHSAWA, Atushi NAGASHIMA
  • APPLICATION OF VRML IN A DYNAMIC AND MULTI-DIMENSIONAL DIGITAL HARBOR. Mingyang PAN, Yifan LI, Depeng ZHAO
  • A COMMON DATA MODEL AND REQUESTING LANGUAGE FOR SPATIAL INFORMATION MARKETPLACES. Matthew Y. C. PANG, Wenzhong SHI, Geoffrey SHEA
  • TOPOLOGIC DATA STRUCTURE FOR A 3D GIS. Mattias Pfund
  • AUTOMATIC RECOGNITION AND LOCATION OF ROAD SIGNS FROM TERRESTERIAL COLOR IMAGERY. Sompoch PUNTAVUNGKOUR, Xiaoyang CHEN, Michiro KUSANAGI
  • A NEW STEREO MATCHING APPROACH USING EDGES AND NONLINEAR MATCHING PROCESS OBJECTED FOR URBAN AREA. Mitsuteru SAKAMOTO, Wei LU, Pingtao WANG
  • MINING SEQUENTIAL PATTERN FROM GEOSPATIAL DATA. Yin SHAN
  • THE ADVANCED GIS AND GPS TECHNOLOGIES TO BE USED IN THE LANCHANG BASIN AREA OF YUNNAN PROVINCE OF CHINA. Kun SHI
  • PRIMARY SPATIAL CHANGES. Hong SHU, Christopher GOLD and Jun CHEN
  • INCORPORATING 3D GEO-OBJECTS INTO AN EXISTING 2D GEO-DATABASE: AN EFFICIENT USE OF GEO-DATA. Jantien STOTER, Peter VAN OOSTEROM
  • A FRAMEWORK FOR AUTOMATED CHANGE DETECTION SYSTEM. Haigang SUI, Deren LI, Jianya GONG
  • BUILDING DISTRIBUTED GEOGRAPHIC INFORMATION SYSTEM FOR OCEAN TRANSPORTATION (GIS-OT). Shaopeng SUN, Guangru LI, Depeng ZHAO
  • COMPUTATION OF ACCURACY ASSESSMENT IN THE INTEGRATION OF PHOTOGRAPH AND LASER DATA. Taravudh TIPDECHO & Xiaoyong CHEN
  • PROXIMITY AND ACCESSIBILITY TO SUITABLE JOBS AMONG WORKERS OF VARIOUS WAGE GROUPS. Fahui WANG
  • WEB MAPPING WITH GEOGRAPHY MARKUP LANGUAGE. Xingling WANG, Chongjun YANG, Donglin LIU
  • INTEGRATION OF COMPACTNESS MEASUREMENT METHODS USING FUZZY MULTICRITERIA DECISION MAKING : A NEW APPROACH FOR COMPACTNESS MEASUREMENT IN SHAPE BASED REDISTRICTING ALGORITHM. Yinchai WANG
  • GIS-BASED SYSTEM FOR RAINFALL ESTIMATION USING RAINGAUGE DATA: A PROTOTYPE. Yinchai WANG, Teck Kiong SIEW
  • A NEW APPROACH FOR DISTRIBUTED GIS. Yuxiang WANG, Chongjun YANG, Donglin LIU
  • GEOD2D: A FLEXIBLE SOLUTION FOR GIS DATA EXCHANGE BASED ON COM. Huayi WU, Xinyan ZHU
  • GEOLOGICAL DATA ORGANIZATION FOR FEM BASED ON 3D GEOSCIENCE MODELING. Lixin WU, Enke HOU, Chunan TANG
  • DIGITAL MODEL AND GPS BASED PATH REPRESENTATION AND OPTIMIZATION. Linyuan XIA
  • AN COMPOSITE TEMPORAL DATA MODEL IN CADASTRAL INFORMATION SYSTEM. Changsheng XUE, Qingquan LI, and Bisheng YANG, Yuanchun HUA, Shiwu XU
  • A SPATIAL-TEMPORAL DATA MODEL FOR MOVING AREA PHENOMENA. Shanzhen Yl, Yong ZHONG, Lizhu ZHOU, Jun CHEN, Qilun LIU
  • CONSTRUCTION OF 3D MODELS FOR ELEVATED OBJECTS IN URBAN AREAS USING AIRBORNE SAR POLARIMETRIC DATA. Yalkun YUSUF, Masashl MATSUOKA, Fumio YAMAZAKI, Seiho URATSUKA, Tatsuharu KOBAYASHI, Makoto SATAKE
  • COASTAL GIS: FUNCTIONALITY VERSUS APPLICATIONS. Thomas Q ZENG, Qiming ZHOU, Peter COWELL and Haijun HUANG
  • CIS AIDED CHARACTERIZATION OF SOIL AND GROUNDWATER ARSENIC CONTAMINATION IN SOUTHERN THAILAND. Jianjun ZHANG, Xiaoyong CHEN, Preeda PARKPIAN, Monthip Sriratana TABUCANON, Janewit WONGSANOON, Kensuke FUKUSHI, Skorn MONGKOLSUK and N.C.THANH
  • MULTIRESOLUTION TERRIAN MODEL. Jin ZHANG
  • A TROUS WAVELET DECOMPOSITION APPLIED TO DETECTING IMAGE EDGE. Xiaodong ZHANG, Deren LI
  • RESEARCH OF THE LAND MANAGEMENT INFORMATION SYSTEM BASED ON WEB GIS AND SPATIAL DATABASES FOR PROVINCIAL AND LOCAL GOVERNMENTS IN CHINA. Junsan ZHAO, Yaolong ZHAO, Qiaogui ZHAO and Tao WEI
  • ANALYSING BRANCH BANK CLOSURES USING GIS AND THE SMART MODEL. Lihua ZHAO, Barry J. GARMER
  • QTM-BASED ALGORITHM FOR THE GENERATING OF VORONOI DIAGRAM FOR SPHERICAL OBJECTS. Xuesheng ZHAO, Jun CHEN
  • MODELING AND LANDSCAPE OF HIGHWAY CAD. Jiaqing ZHENG, Xi’an ZHAO, Chujiang CHEN
  • ASSISTING THE DEVELOPMENT OF KNOWLEDGE FOR PREDICTIVE MAPPING USING A FUZZY C-MEANS CLASSIFICATION. A-Xing ZHU, Edward ENGLISH
  • THE DESIGN AND IMPLEMENTATION OF CYBERCITY GIS (CCGIS). Qing ZHU, Deren LI, Yeting ZHANG, Hanjiang XIONG
  • 3D COMPUTER SIMULATION OF ANCIENT CHINESE TIMBER BUILDINGS. Yixuan ZHU, Jie YANG, Deren LI
  • 3D MODELLING FOR AUGMENTED REALITY. Siyka ZLATANOVA
  • THE DESIGN OF SPATIAL DATA WAREHOUSE. Yijiang ZOU
  • AUTHOR INDEX
  • Cover

Full text

ISPRS, Vol.34, Part 2W2, “Dynamic and Multi-Dimensional GIS", Bangkok, May 23-25, 2001 
The motion vector aims to support continuous change modeling, 
to facilitate future queries, and simultaneously to reduce data 
storage volume. MOST model makes possible real-time update 
of spatial locations of object, but it doesn’t emphasize keeping 
the whole history of spatial data. In contrast, Erwig, M., R.H. 
Gueting et al. (1997) designed the abstract data type of moving 
object into their geo-relational algebra. Extended geo-relational 
algebra has formally defined two abstract data types of moving 
object (moving point mpoint and moving region mregion) and 
relevant operators. The types mpoint and mregion are defined 
as mappings from time to space mathematically, that is, 
Mpoint time ->point 
Mregion: time ->region 
The type mpoint indicates that the location of object is varying 
over time. The type mregion indicates that extent of object is 
varying over time, e.g., shrinking or expanding. The authors 
insist that moving line is the trajectory of moving point, so it is 
somewhat unnecessary to define moving line type. 
In contrast to MOST model, extended geo-relational algebra put 
special emphasis on history maintenance of time-varying spatial 
data. Another difference is that MOST model pays more 
attention to implementation with motion vector data structure, but 
extended geo-relational algebra mainly focuses on conceptual 
abstraction of time-varying property of geographical objects. It is 
obvious that both MOST model and extended geo-relational 
algebra classify spatial changes by the joint criterion of 
geometrical dimensionality and location movement. 
2.4 The Criterion of Spatial Variables 
Pierre Gagnon, Yvan Bedard and Geoffrey Edwards (1992) 
categorized spatial changes into three groups: one-entity 
change, two-entity change and multi-entity change. One-entity 
changes consist of existence, extinction, location (position) 
change, direction (orientation) change, shape change and size 
change of an entity. Two-entity changes consist of spatial 
relationship (topological relationship) changes between two 
entities. Multi-entity changes are population changes formed 
with 3 entities or more, including location (position) change, 
direction (orientation) change, shape change and size change 
(cumulative size change or population size change) and change 
of spatial distribution type of a population. The cumulative size is 
the summation of all individual sizes of entities of a population. 
When combined with the number of entities, it provides 
“presence rate”. The spatial population size corresponds to the 
size of distribution area, when combined with the number of 
entities, it provides “occupation rate”, and when combined with 
cumulative size, it provides “spatial density”. There are three 
types of spatial distribution, regular, random and grouped 
distributions. This change classification is referred to be based 
on the criterion of spatial variables, spatial variables of a single 
entity (location, direction, shape and size) and spatial variables 
of multi-entity (cumulative size, population size and spatial 
distribution type). 
2.5 The Joint Criterion of Spatial Variables and 
Geographical Functions 
Christophe Claramunt and Marius Theriaut (1995, 1996) posed 
three types of spatio-temporal process: (1) the evolution of a 
single entity; (2) the processes involving functional relationships 
between several entities; (3) the evolution of spatial structures 
involving several entities. 
For the evolution of a single entity, there exist three types of 
process: 
• Basic processes including appearance, disappearance and 
spatial stability to allow representation of attribute variation 
without spatial effects; 
• Transformation processes involving changes in shape or 
size, including expansion, contraction and deformation (shape 
modification without size change); 
• Movement processes involving only position changes, 
including displacement and rotation. 
For the processes involving functional relationships, it can be 
grouped into two categories: 
• Replacement processes involving a sequence of entities of 
comparable types that accomplish the same function or occupy 
the same position in space (without necessarily having identical 
locations), e.g., succession and permutation. 
• Diffusion processes involving a transfer of characteristics 
between two or more spatial entities. It seems useful to 
distinguish between production (creation of new entities by 
actions of one or more entities of different natures), reproduction 
(creation of new entities by actions of essentially identical 
entities called parents) and transmission (modification of 
characteristics of a receiver due to influence of a transmitter). 
Each process carries a precedence constraint. Contagion is a 
specific form of diffusion. 
For the evolution of spatial structures involving several entities, 
three restructuring processes are introduced. They are splitting, 
union and reallocation. 
It is easy to know that the change classification of single entity is 
mainly based on spatial variables (shape, size, location, 
direction), and functional relationship evolutions on geographical 
functions. Also, some basic processes of single entity and 
spatial structure evolutions are associated with changes of 
object identity 
2.6 The Joint Criterion of Entity Identity and Geographical 
Functions 
Kathleen Hornsby and Max J.Egenhofer (1997, 1998) proposed 
a change classification based on object identity and a set of 
operations that preserve or change object identity. In conjunction 
with geographical functions, they defined four kinds of change 
(or operation): (1) transitions (concretely, transition between 
object existence and object extinction, issue transition, and 
separate transition); (2) identity operations on a single object 
(creation, destruction, continuing existence, continuing non 
existence, and equivalent reincarnation, same reincarnation); 
issuing operations (spawning and metamorphosis); operations of 
combining single objects (merge, generate and mix); splitting 
operations (splinter and division); (3) Operations on a single 
object and a composite object, i.e., operations of forming 
composite object (aggregation, compound, union, amalgamation 
and combination), operations of splitting composite objects 
(secession and dissolution); (4) Operations of selecting an object 
or a portion of an object. 
3 PRIMARY SPATIAL CHANGES 
From the above investigations, we can see that spatial changes 
are usually described in four respects, i.e., spatial property 
change, object identity change, spatial distribution change and 
functional change. Among them, functional change is application 
dependent, and is of various number, which can be explained at 
different levels of abstraction. Thus, in a general form, we define 
various changes at three levels, property change, object change 
and scene change. Scene change is similar to spatial distribution 
change, which is an overall change composed of property and 
object changes. Meanwhile, we recognize time semantics with 
three simple time-varying patterns, i.e., discrete change, 
stepwise change and continuous change. 
3.1 Three Levels of Spatial Change 
In the bottom-up order, three levels of spatial change are spatial 
property change, spatial object change and spatial scene 
change (Figure 1). Spatial property change refers to geometrical 
property change and geometrical dimensionality change. Spatial 
object change is related to change of object identity. Spatial
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Chen, Jun. The 3rd ISPRS Workshop on Dynamic and Multi-Dimensional GIS & the 10th Annual Conference of CPGIS on Geoinformatics. AIT, 2001.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many letters is "Goobi"?:

I hereby confirm the use of my personal data within the context of the enquiry made.