Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Mapping without the sun

Access restriction

There is no access restriction for this record.

Copyright

The copyright and related rights status of this record has not been evaluated or is not clear. Please refer to the organization that has made the Item available for more information.

Bibliographic data

fullscreen: Mapping without the sun

Monograph

Persistent identifier:
856578517
Author:
Zhang, Jixian
Title:
Mapping without the sun
Sub title:
techniques and applications of optical and SAR imagery fusion ; Chengdu, China, 25 - 27 September 2007
Scope:
1 Online-Ressource (III, 352 Seiten)
Year of publication:
2007
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856578517
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Mapping without the sun
  • Cover
  • ColorChart
  • Title page
  • Table of Content
  • Foreword
  • Scientific Committee:
  • Organizing Committee:
  • DECISION FUSION OF MULTITEMPORAL SAR AND MULTISPECTRAL IMAGERY FOR IMPROVED LAND COVER CLASSIFICATION B. Waske a, J. A. Benediktsson b’*
  • SYNERGISTIC USE OF OPTICAL AND INSAR DATA FOR URBAN IMPERVIOUS SURFACE MAPPING: A CASE STUDY IN HONG KONG. Liming Jiang, Hui Lin, Mingsheng Liao, Limin Yang
  • A NOVEL FUSION METHOD OF SAR AND OPTICAL IMAGES FOR URBAN OBJECT EXTRACTION. Jia Yonghong, Rick S. Blum,Ma Yunxia
  • REAL-TIME SAR SIMULATION FOR CHANGE DETECTION APPLICATIONS BASED ON DATA FUSION. Timo Balz
  • THE OPTIMIZING METHOD OF FUSING SAR WITH OPTICAL IMAGES FOR INFORMATION EXTRACTION. Feng Xie, Yingying Chen, Yi Lin
  • ORTHORECTIFYING SPACEBORNE SAR BY DEM BASED ON FINE REGISTRATION. Hongjian You, Fu Kun
  • DETECTION AND ANALYSIS OF EARTHQUAKE-INDUCED URBAN DISASTER BASED ON INSAR COHERENCE. M. He, X. F. He
  • MULTI-SCALE SAR LAND USE/LAND COVER CLASSIFICATION BASED ON CO-OCCURRENCE PROBABILITIES. Yu ZENG, Jixian ZHANG, J. L.VAN GENDEREN, Haitao LI
  • TERRASAR-X AND TANDEM-X: REVOLUTION IN SPACEBORNE RADAR. Ralf Duering
  • A MULTI-WAVELENGTH IMAGING SYSTEM FOR DETECTION OF FOREIGN FIBERS IN COTTON. Lu Dehao
  • A FUSION ALGORITHM OF HIGH SPATIAL AND SPECTRAL RESOLUTION IMAGES BASED ON ICA. GuoKun Zhang, LeiGuang Wang, Hongyan Zhang
  • A SUPER RESOLUTION RECONSTRUCTION ALGORITHM TO MULTI-TEMPORAL REMOTE SENSING IMAGES. Pingxiang Li, Jixian Zhang, Huanfeng Shen, Liangpei Zhang
  • COMPARISON OF MORPHOLOGICAL PYRAMID AND LAPLACIAN PYRAMID TECHNIQUES FOR FUSING DIFFERENT FOCUSING IMAGES. Jia Yonghong, Fu Xiujun, Yu Hongwei
  • MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
  • PREDICTION AND SIMULATIONS OF MALAYSIAN FOREST FIRES BY MEANS OF RANDOM SPREAD. Jean Serra, Mohd Dini Hairi Suliman, and Mastura Mahmud
  • TEXTURE CLASSIFICATION RESEARCH BASED ON LIFTING-BASED DWT 9/7 WAVELET. Hong Zhang, Ning Shu
  • REMOTE SENSING IMAGE SEGMENTATION BASED SELF-ORGANIZING MAP AT MULTI-SCALE. Zhao Xi-an, Zhang Xue-wen Wei Shi-yan
  • A JOINT SPATIAL-TEMPORAL CLASSIFICATION AND FEATURE BOUNDARY UPDATING MODEL. P. Caccetta
  • THE APPLICATION RESEARCH IN ASSISTANT CLASSIFICATION OF REMOTE SENSING IMAGE BY TEXTURE FEATURES COMBINED WITH SPECTRA FEATURES. Y. M. Fang, X. Q. Zuo, Y. J. Yang, J. H. Feng
  • A KIND OF THE METHODS FOR SAR AND OPTICAL IMAGES FUSION BASED ON THE LIFTING WAVELET. Shao Yongshe, Chen Ying, Li Jing
  • SOIL MOISTURE RETRIEVAL COMBINING OPTICAL AND RADAR DATA DURING SMEX02. Chen Quan, Li Zhen, Tian Bangsen
  • A TARGET DETECTION METHOD BASED ON SAR AND OPTICAL IMAGE DATA FUSION. Sun Mu-han, Zhou Yin-qing, Xu Hua-ping
  • FUSION SAR AND OPTICAL IMAGES TO DETECT OBJECT-SPECIFIC CHANGES. Mu H. Wang, Hai T. Li, Ji. X Zhang ,Jing H. Yang
  • APPLICATION OF DINSAR AND GIS FOR UNDERGROUND MINE SUBSIDENCE MONITORING. YAN Ming-xing, MIAO Fang, WANG Bao-cun, QI Xiao-ying
  • THE DETECTION OF SUBSIDENCE AT PERMANENT FROZEN AREA IN QINGHAI-TIBETAN PLATEAU. Z. Li, C. Xie, Q. Chen
  • RESEARCH ON SURFACE SUBSIDENCE MONITORING WITH INSAR/GPS DATA FUSION IN MINING AREA. ZHANG Ji-chao, SONG Wei-dong, ZHANG Ji-xian, SHI Jin-feng
  • SEVEN YEARS OF MINING SUBSIDENCE DETECTED BY D-InSAR TECHNIQUE IN FUSHUN CITY, CHINA. Y. L. Chen, X. L. Ding, C. Huang, Z. W. Li
  • A METHOD ON HIGH-PRECISION RECTIFICATION AND REGISTRATION OF MULTI-SOURCE REMOTE SENSING IMAGERY. Bin Liu, Guo Zhang, Xiaoyong Zhu, Jianya Gong
  • STUDY ON TIE POINT SELECTION FOR CO-REGISTRATION OF DIFFERENT RESOLUTION IMAGERY. Zhen Xiong, Yun Zhang
  • THE STUDY OF SPACE INTERSECTION MODEL BASED ON DIFFERENT-SOURCE HIGH RESOLUTION RS IMAGERY. Weixi Wang, Qing Zhu
  • AN OPTIMIZATION HIGH-PRECISION REGISTRATION METHOD OF MULTI-SOURCE REMOTE SENSING IMAGES. LIN Yi, JIAN Jianfeng , ZHANG Shaoming, XIE Feng
  • A METHODOLOGY OF LUCC CHANGE DETECTION BASED ON LAND USE SEGMENT. Ning Shu, Hong Zhang, Xue Li, Yan Wang
  • APPLICATION OF MULTI-TEMPORAL TM (ETM+) IMAGE IN MONITORING MINING ACTIVITIES AND RELATED ENVIRONMENT CHANGES: A CASE STUDY AT DAYE, HUBEI, CHINA. Shiyong YU, Zhihua CHEN, Yanxin WANG
  • LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
  • LAND USE CHANGES IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. Sun xiaoxia, Zhang jixian, Liu zhengjun
  • AUTOMATED VEHICLE INFORMATION EXTRACTION FROM ONE PASS OF QUICKBIRD IMAGERY. Zhen Xiong, Yun Zhang
  • CLASSIFICATION OF LAND TYPES IN MINERAL AREAS BASED ON CART. Wenbo Wu, Yuping Chen, Jiaojiao Meng, Tingjun Kang
  • OBJECT-ORIENTED CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MRF AND SVM. GU Haiyan, LI Haitao, ZHANG feng, HAN Yanshun, YANG Jinghui
  • EXTENSIBLE LAND USE AND LAND COVER CLASSIFICATION FRAMEWORK DESIGN BASED ON REMOTELY SENSED DATA. Wang Juanle
  • THE ROAD EXTRACTION IN THE AREA COVERED WITH HIGH VEGETATION USING THE FUSION IMAGE OF SAR AND TM. Shen Jin-li, Yu Wu-yi, Qi Xiao-ping, Zhang Yi-min
  • DISCRETE WAVELET-BASED FUSION OF TM MULTI-SPECTRAL IMAGE AND SAR IMAGE DATA. Liang Shouzhen, Li Lanyong
  • FUSING SAR AND OPTICAL IMAGES BASED ON COMPLEX WAVELET TRANSFORM. Shuai Xing, Qing Xu
  • A COMPREHENSIVE QUALITY EVALUATION METHOD OF INFORMATION FUSION FROM HIGH-RESOLUTION AIRBORNE SAR AND SPOT5 IMAGES. Wenqing Dong, Qin Yan,
  • A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
  • A NOVEL IMAGE FUSION METHOD BASED ON 2DPCA IN REMOTE SENSING. Xue-ming Wu, Wu-nian Yang
  • A METHOD TO DETERMINE SPATIAL RESOLUTION OF REMOTE SENSING FUSED IMAGE QUANTITATIVELY. X. J. Yue, L. Yan, G. M. Huang
  • A NEW PAN-SHARPENING ALGORITHM AND ITS APPLICATION IN GEOGRAPHIC FEATURES INFORMATION EXTRACTION. ZHU Lijiang
  • RESEARCH ON THE PROCESS OF LAND USE/COVER CHANGE IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. SHAO Huai-Yong, XIAN Wei, LIU Xue-Mei, YANG Wu-Nian
  • THE STUDY OF LAND USE CHANGE DETECTION BASED ON SOLE PERIOD RS IMAGE. Song Weidong, Wang Jingxue, Qin Yong
  • ANALYSIS OF THE LAND USE OF SHENYANG MINING DISTRICT AND ITS DRIVING FORCE. Kaixuan Zhang, Wenbo Wu, Chongchang Wang, Tingjun Kang
  • REMOTE-SENSING IMAGE COMPRESSION BASED ON FRACTAL THEORY. Chao Mu, Qin Yan, Jie Yu, Huiling Qin
  • MATRIX DECOMPOSITION AND MATRIX SOLVERS IN PHOTOGRAMMETRY. Cheng Chunquan, Deng Kazhong, Zhang Jixian, YanQin
  • INVESTIGATING SEVERAL POINT CLOUD REGISTRATION MOTHEDS. Luo Dean, Zhou Keqin, Huang Jizhong
  • THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
  • EPIPOLAR RESAMPLING OF DIFFERENT TYPES OF SATELLITE IMAGERY. Jiaying Liu, Guo Zhang, Deren Li
  • REFINEMENT AND EVALUATION OF BEIJING-1 ORTHORECTIFICATION BASED ON RFM. Jianming Gong, Xiaomei Yang, Chenghu Zhou, Xiaoyu Sun, Cunjin Xue
  • LAND COVER CLASSIFICATION BY IMPROVED FUZZY C-MEAN CLASSIFIER. ZHAO Quan-hua, SONG Wei-dong, Bao Yong
  • RESEARCH ON GRIDDING PROCESSING STRATEGIES OF REMOTE SENSING IMAGE SEGMENTATION BY REGION GROWTH. ZHU Hong-chun, ZHANG Ji-xian, LI Hai-tao, YANG Jing-hui, LIU Hai-ying
  • TEXTURE ANALYSIS IN INFORMATION EXTRACT IN THE HIGH RESOLUTION RS IMAGES LU Shuqiang
  • THE STUDY OF REMOTE SENSING IMAGE INFORMATION EXTRACTION TECHNIQUES BASED ON KNOWLEDGE. Wenbo Wu, Jiaojiao Meng, Yuping Chen, Jing Chen
  • A NEW METHOD OF SIMULATION OF INTERFEROGRAM IMAGE FOR REPEAT-PASS SAR SYSTEM. Jianmin Zhou, Zhen Li, Xinwu Li, Chou Xie
  • COMPARISON AND IMPROVEMENT OF POSITION METHODS OF AIRBORNE STEREO SAR IMAGES. H. D. Fan, K. Z. Deng, G. M.Huang, Z. Zhao., X. J. Yue, X. M. Luo, Y. F. Ling
  • STUDY ON TOPOGRAPHIC MAP UPDATING WITH HIGH RESOLUTION AIRBORNE SAR IMAGE. X .M. Luo, G. M. Huang, Z. Zhao
  • AN EXPERIMENT OF HIGH RESOLUTION SAR IMAGE IN DYNAMIC MONITORING THE CHANGE OF CONSTRUCTION LAND. CaoYinxuan, Zhang Yonghong, YanQin, ZhaoZheng
  • RESEARCH ON STATISTICS AND SPATIAL ANALYSIS OF DRAINAGE BASIN'S IMPORTANT GEOGRAPHICAL ELEMENTS. Liu Ping, Liu Jiping, Zhao Rong
  • THE RESEARCH AND ESTABLISHMENT OF IMAGE DATABASE SYSTEM BASED ON ORACLE. Li Lanyong, Song Weidong, Chen Zhaoliang, Zhao Hongfeng
  • SITE SELECTION FOR SATELLITE GEOMETRIC TEST RANGE IN CHINA. Xinxin Zhu, Guo Zhang, Qing Zhu, Xinming Tang
  • ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
  • RESEARCH ON DYNAMIC SYMBOL BASE. Yang ping, Tang Xinming, Wang Shengxiao, Lei Bing, Wang Huibing
  • DETERMINATION OF CHLOROPHYLL CONCENTRATION IN THREE GORGES DAM USING CHRIS/PROBA IMAGE DATA. GAI Li-ya, LIU Zheng-jun,ZHANG Ji-xian
  • RESEARCH ON LAND SANDY DESERTIFICATION WITH REMOTE SENSING -Take Qinghai Lake Areas as an example. Jian Ji, Chen Yuanyuan, Yang wunian, Tang nengfu
  • METHODS AND APPLICATION OF QUALITY ASSESSMENT FOR REMOTE SENSING IMAGE COMPRESSION. ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong
  • ON-ORBIT MTF ESTIMATION METHODS FOR SATELLITE SENSORS. LI Xianbin, JIANG Xiaoguang, Tang Lingli
  • AUTHOR INDEX
  • KEYWORDS INDEX
  • Cover

Full text

219 
A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO 
Pang Xinhua*, Xi Bin , Chen Luyao, Pan Yaozhong,, Zhuang Wei 
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University; College of 
Resources Science & Technology, Beijing Normal University, Beijing 100875, P. R. of China 
-(xhpang, binxi, lychen ,pyz, terfil)@ires.cn 
KEY WORDS: Remote Sensing, Data Fusion, SVR, SSVR 
ABSTRACT: 
A Simplified Synthetic Variable Ratio (SSVR) fusion method is presented to merge high spatial resolution panchromatic (Pan) 
image and high spectral resolution multispectral (MS) images based on a simulation of the panchromatic image from the 
multispectral bands. Landsat7 ETM+ images were used to assess the effectiveness of classification-oriented SSVR method in 
comparison to Principal Component, multiplicative, Brovey transform and ISVR methods. Compared to other fusion methods, the 
images generated by SSVR method have more information and high spatial resolution while maintaining the basic spectral 
characteristic of the original multispectral image, and SSVR method is simpler to carry out than other SVR methods. 
1. INTRODUCTION 
With the rapid group of the internet and other electronic sources 
of information, the problem of the coherent merging of 
information from multiple sources has become an important 
issue. This problem has many manifestation ranging from data 
mining to information retrieval to multi-sensor fusion (Ronald, 
2004). For many applications the information provided by 
individual sensors are incomplete, inconsistent, or imprecise 
(Varshney, 1997; Hall et al, 1997; Pohl et al., 1998). 
Additional sources may provide complementary data, and 
fusion of different information can produce a better 
understanding of the observed site, by decreasing the 
uncertainty related to the single sources (Farina et al., 1996; 
Cl ement et al., 1993). 
In data fusion the information of a specific scene acquired by 
two or more sensors at the same time or separate times is 
combined to generate an interpretation of the scene not 
obtainable from a single sensor. Alternatively, data fusion is 
done to reduce the uncertainty associated with the data from 
individual sensors. Relaxing this operational definition slightly, 
also the combination of the information acquired by the same 
sensor at different times to improve interpretation is considered 
as data fusion (Tax et al., 1997). Image fusion is used to merge 
images of different spatial and spectral resolutions to create a 
high spatial resolution multi-spectral combination. High 
spectral resolution allows identification of materials in the 
scene, while high spatial resolution locates those materials. 
The actual fusion process can take place at different levels 
(pixel-level, feature-level and decision-level) of information 
representation (Pohl et al., 1998). Which level to choose is 
determined by the purpose. For example, pixel-level fusion is 
appropriate for land use classifications; because pixel-level 
fusion can maintain more spectral characteristics of the original 
multi-spectral image and decreasing the obscurity of image 
interpretation. The common pixel-level fusion methods are 
PC A, Multiplicative, Brovey Transform, HPF Transform, HIS 
Transform, HDF Transform and wavelet Transform. But these 
methods may cause spectral distorting and are difficult to 
accomplish. 
Synthetic Variable Ratio(SVR) fusion method was presented by 
Munechika et al., improved by Zhang(Zhang, 1999; Zhang, 
2001). But it is still difficult to calculate. The main purpose of 
the paper is to present a simplified fusion method with physical 
meaning based on SVR. The main purpose of the paper is to 
present a simplified fusion method with physical meaning based 
on SVR. 
2. SSVR FUSION METHOD 
2.1 SVR (Synthetic Variable Ratio) Fusion Method & 
Improvement 
SVR is proposed by Munechika et al (1993) taken example of 
TM (30m) - SPOT (10m), and the formulation is: 
XSP i = Pan H 
(1) 
here XSP' means band i grey value of high spatial resolution 
image after fusion, Pan H means grey value of original high 
resolution spatial panchromatic image, XS Li means band i 
gray value of original low spatial resolution multispectral image, 
and Pan, means grey value of high resolution spatial 
Lsyn 
panchromatic image that are synthesized by band 1, 2, 3, 4 of 
multispectral TM image. 
* Pang Xinhua, male, Master, major in GIS&RS, College of Resources Science & Technology, Beijing Normal University, 
Beijing ,China. Recent research interests in the applications of remote sensing in crop planting area measurement and land use/cover 
change detection. Tel: 010-58805750, E-mail: xhpang@ires.cn
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

zhang, jixian. Mapping without the Sun. GITC, 2007.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fourth digit in the number series 987654321?:

I hereby confirm the use of my personal data within the context of the enquiry made.