Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Mapping without the sun

Access restriction

There is no access restriction for this record.

Copyright

The copyright and related rights status of this record has not been evaluated or is not clear. Please refer to the organization that has made the Item available for more information.

Bibliographic data

fullscreen: Mapping without the sun

Monograph

Persistent identifier:
856578517
Author:
Zhang, Jixian
Title:
Mapping without the sun
Sub title:
techniques and applications of optical and SAR imagery fusion ; Chengdu, China, 25 - 27 September 2007
Scope:
1 Online-Ressource (III, 352 Seiten)
Year of publication:
2007
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856578517
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Mapping without the sun
  • Cover
  • ColorChart
  • Title page
  • Table of Content
  • Foreword
  • Scientific Committee:
  • Organizing Committee:
  • DECISION FUSION OF MULTITEMPORAL SAR AND MULTISPECTRAL IMAGERY FOR IMPROVED LAND COVER CLASSIFICATION B. Waske a, J. A. Benediktsson b’*
  • SYNERGISTIC USE OF OPTICAL AND INSAR DATA FOR URBAN IMPERVIOUS SURFACE MAPPING: A CASE STUDY IN HONG KONG. Liming Jiang, Hui Lin, Mingsheng Liao, Limin Yang
  • A NOVEL FUSION METHOD OF SAR AND OPTICAL IMAGES FOR URBAN OBJECT EXTRACTION. Jia Yonghong, Rick S. Blum,Ma Yunxia
  • REAL-TIME SAR SIMULATION FOR CHANGE DETECTION APPLICATIONS BASED ON DATA FUSION. Timo Balz
  • THE OPTIMIZING METHOD OF FUSING SAR WITH OPTICAL IMAGES FOR INFORMATION EXTRACTION. Feng Xie, Yingying Chen, Yi Lin
  • ORTHORECTIFYING SPACEBORNE SAR BY DEM BASED ON FINE REGISTRATION. Hongjian You, Fu Kun
  • DETECTION AND ANALYSIS OF EARTHQUAKE-INDUCED URBAN DISASTER BASED ON INSAR COHERENCE. M. He, X. F. He
  • MULTI-SCALE SAR LAND USE/LAND COVER CLASSIFICATION BASED ON CO-OCCURRENCE PROBABILITIES. Yu ZENG, Jixian ZHANG, J. L.VAN GENDEREN, Haitao LI
  • TERRASAR-X AND TANDEM-X: REVOLUTION IN SPACEBORNE RADAR. Ralf Duering
  • A MULTI-WAVELENGTH IMAGING SYSTEM FOR DETECTION OF FOREIGN FIBERS IN COTTON. Lu Dehao
  • A FUSION ALGORITHM OF HIGH SPATIAL AND SPECTRAL RESOLUTION IMAGES BASED ON ICA. GuoKun Zhang, LeiGuang Wang, Hongyan Zhang
  • A SUPER RESOLUTION RECONSTRUCTION ALGORITHM TO MULTI-TEMPORAL REMOTE SENSING IMAGES. Pingxiang Li, Jixian Zhang, Huanfeng Shen, Liangpei Zhang
  • COMPARISON OF MORPHOLOGICAL PYRAMID AND LAPLACIAN PYRAMID TECHNIQUES FOR FUSING DIFFERENT FOCUSING IMAGES. Jia Yonghong, Fu Xiujun, Yu Hongwei
  • MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
  • PREDICTION AND SIMULATIONS OF MALAYSIAN FOREST FIRES BY MEANS OF RANDOM SPREAD. Jean Serra, Mohd Dini Hairi Suliman, and Mastura Mahmud
  • TEXTURE CLASSIFICATION RESEARCH BASED ON LIFTING-BASED DWT 9/7 WAVELET. Hong Zhang, Ning Shu
  • REMOTE SENSING IMAGE SEGMENTATION BASED SELF-ORGANIZING MAP AT MULTI-SCALE. Zhao Xi-an, Zhang Xue-wen Wei Shi-yan
  • A JOINT SPATIAL-TEMPORAL CLASSIFICATION AND FEATURE BOUNDARY UPDATING MODEL. P. Caccetta
  • THE APPLICATION RESEARCH IN ASSISTANT CLASSIFICATION OF REMOTE SENSING IMAGE BY TEXTURE FEATURES COMBINED WITH SPECTRA FEATURES. Y. M. Fang, X. Q. Zuo, Y. J. Yang, J. H. Feng
  • A KIND OF THE METHODS FOR SAR AND OPTICAL IMAGES FUSION BASED ON THE LIFTING WAVELET. Shao Yongshe, Chen Ying, Li Jing
  • SOIL MOISTURE RETRIEVAL COMBINING OPTICAL AND RADAR DATA DURING SMEX02. Chen Quan, Li Zhen, Tian Bangsen
  • A TARGET DETECTION METHOD BASED ON SAR AND OPTICAL IMAGE DATA FUSION. Sun Mu-han, Zhou Yin-qing, Xu Hua-ping
  • FUSION SAR AND OPTICAL IMAGES TO DETECT OBJECT-SPECIFIC CHANGES. Mu H. Wang, Hai T. Li, Ji. X Zhang ,Jing H. Yang
  • APPLICATION OF DINSAR AND GIS FOR UNDERGROUND MINE SUBSIDENCE MONITORING. YAN Ming-xing, MIAO Fang, WANG Bao-cun, QI Xiao-ying
  • THE DETECTION OF SUBSIDENCE AT PERMANENT FROZEN AREA IN QINGHAI-TIBETAN PLATEAU. Z. Li, C. Xie, Q. Chen
  • RESEARCH ON SURFACE SUBSIDENCE MONITORING WITH INSAR/GPS DATA FUSION IN MINING AREA. ZHANG Ji-chao, SONG Wei-dong, ZHANG Ji-xian, SHI Jin-feng
  • SEVEN YEARS OF MINING SUBSIDENCE DETECTED BY D-InSAR TECHNIQUE IN FUSHUN CITY, CHINA. Y. L. Chen, X. L. Ding, C. Huang, Z. W. Li
  • A METHOD ON HIGH-PRECISION RECTIFICATION AND REGISTRATION OF MULTI-SOURCE REMOTE SENSING IMAGERY. Bin Liu, Guo Zhang, Xiaoyong Zhu, Jianya Gong
  • STUDY ON TIE POINT SELECTION FOR CO-REGISTRATION OF DIFFERENT RESOLUTION IMAGERY. Zhen Xiong, Yun Zhang
  • THE STUDY OF SPACE INTERSECTION MODEL BASED ON DIFFERENT-SOURCE HIGH RESOLUTION RS IMAGERY. Weixi Wang, Qing Zhu
  • AN OPTIMIZATION HIGH-PRECISION REGISTRATION METHOD OF MULTI-SOURCE REMOTE SENSING IMAGES. LIN Yi, JIAN Jianfeng , ZHANG Shaoming, XIE Feng
  • A METHODOLOGY OF LUCC CHANGE DETECTION BASED ON LAND USE SEGMENT. Ning Shu, Hong Zhang, Xue Li, Yan Wang
  • APPLICATION OF MULTI-TEMPORAL TM (ETM+) IMAGE IN MONITORING MINING ACTIVITIES AND RELATED ENVIRONMENT CHANGES: A CASE STUDY AT DAYE, HUBEI, CHINA. Shiyong YU, Zhihua CHEN, Yanxin WANG
  • LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
  • LAND USE CHANGES IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. Sun xiaoxia, Zhang jixian, Liu zhengjun
  • AUTOMATED VEHICLE INFORMATION EXTRACTION FROM ONE PASS OF QUICKBIRD IMAGERY. Zhen Xiong, Yun Zhang
  • CLASSIFICATION OF LAND TYPES IN MINERAL AREAS BASED ON CART. Wenbo Wu, Yuping Chen, Jiaojiao Meng, Tingjun Kang
  • OBJECT-ORIENTED CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MRF AND SVM. GU Haiyan, LI Haitao, ZHANG feng, HAN Yanshun, YANG Jinghui
  • EXTENSIBLE LAND USE AND LAND COVER CLASSIFICATION FRAMEWORK DESIGN BASED ON REMOTELY SENSED DATA. Wang Juanle
  • THE ROAD EXTRACTION IN THE AREA COVERED WITH HIGH VEGETATION USING THE FUSION IMAGE OF SAR AND TM. Shen Jin-li, Yu Wu-yi, Qi Xiao-ping, Zhang Yi-min
  • DISCRETE WAVELET-BASED FUSION OF TM MULTI-SPECTRAL IMAGE AND SAR IMAGE DATA. Liang Shouzhen, Li Lanyong
  • FUSING SAR AND OPTICAL IMAGES BASED ON COMPLEX WAVELET TRANSFORM. Shuai Xing, Qing Xu
  • A COMPREHENSIVE QUALITY EVALUATION METHOD OF INFORMATION FUSION FROM HIGH-RESOLUTION AIRBORNE SAR AND SPOT5 IMAGES. Wenqing Dong, Qin Yan,
  • A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
  • A NOVEL IMAGE FUSION METHOD BASED ON 2DPCA IN REMOTE SENSING. Xue-ming Wu, Wu-nian Yang
  • A METHOD TO DETERMINE SPATIAL RESOLUTION OF REMOTE SENSING FUSED IMAGE QUANTITATIVELY. X. J. Yue, L. Yan, G. M. Huang
  • A NEW PAN-SHARPENING ALGORITHM AND ITS APPLICATION IN GEOGRAPHIC FEATURES INFORMATION EXTRACTION. ZHU Lijiang
  • RESEARCH ON THE PROCESS OF LAND USE/COVER CHANGE IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. SHAO Huai-Yong, XIAN Wei, LIU Xue-Mei, YANG Wu-Nian
  • THE STUDY OF LAND USE CHANGE DETECTION BASED ON SOLE PERIOD RS IMAGE. Song Weidong, Wang Jingxue, Qin Yong
  • ANALYSIS OF THE LAND USE OF SHENYANG MINING DISTRICT AND ITS DRIVING FORCE. Kaixuan Zhang, Wenbo Wu, Chongchang Wang, Tingjun Kang
  • REMOTE-SENSING IMAGE COMPRESSION BASED ON FRACTAL THEORY. Chao Mu, Qin Yan, Jie Yu, Huiling Qin
  • MATRIX DECOMPOSITION AND MATRIX SOLVERS IN PHOTOGRAMMETRY. Cheng Chunquan, Deng Kazhong, Zhang Jixian, YanQin
  • INVESTIGATING SEVERAL POINT CLOUD REGISTRATION MOTHEDS. Luo Dean, Zhou Keqin, Huang Jizhong
  • THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
  • EPIPOLAR RESAMPLING OF DIFFERENT TYPES OF SATELLITE IMAGERY. Jiaying Liu, Guo Zhang, Deren Li
  • REFINEMENT AND EVALUATION OF BEIJING-1 ORTHORECTIFICATION BASED ON RFM. Jianming Gong, Xiaomei Yang, Chenghu Zhou, Xiaoyu Sun, Cunjin Xue
  • LAND COVER CLASSIFICATION BY IMPROVED FUZZY C-MEAN CLASSIFIER. ZHAO Quan-hua, SONG Wei-dong, Bao Yong
  • RESEARCH ON GRIDDING PROCESSING STRATEGIES OF REMOTE SENSING IMAGE SEGMENTATION BY REGION GROWTH. ZHU Hong-chun, ZHANG Ji-xian, LI Hai-tao, YANG Jing-hui, LIU Hai-ying
  • TEXTURE ANALYSIS IN INFORMATION EXTRACT IN THE HIGH RESOLUTION RS IMAGES LU Shuqiang
  • THE STUDY OF REMOTE SENSING IMAGE INFORMATION EXTRACTION TECHNIQUES BASED ON KNOWLEDGE. Wenbo Wu, Jiaojiao Meng, Yuping Chen, Jing Chen
  • A NEW METHOD OF SIMULATION OF INTERFEROGRAM IMAGE FOR REPEAT-PASS SAR SYSTEM. Jianmin Zhou, Zhen Li, Xinwu Li, Chou Xie
  • COMPARISON AND IMPROVEMENT OF POSITION METHODS OF AIRBORNE STEREO SAR IMAGES. H. D. Fan, K. Z. Deng, G. M.Huang, Z. Zhao., X. J. Yue, X. M. Luo, Y. F. Ling
  • STUDY ON TOPOGRAPHIC MAP UPDATING WITH HIGH RESOLUTION AIRBORNE SAR IMAGE. X .M. Luo, G. M. Huang, Z. Zhao
  • AN EXPERIMENT OF HIGH RESOLUTION SAR IMAGE IN DYNAMIC MONITORING THE CHANGE OF CONSTRUCTION LAND. CaoYinxuan, Zhang Yonghong, YanQin, ZhaoZheng
  • RESEARCH ON STATISTICS AND SPATIAL ANALYSIS OF DRAINAGE BASIN'S IMPORTANT GEOGRAPHICAL ELEMENTS. Liu Ping, Liu Jiping, Zhao Rong
  • THE RESEARCH AND ESTABLISHMENT OF IMAGE DATABASE SYSTEM BASED ON ORACLE. Li Lanyong, Song Weidong, Chen Zhaoliang, Zhao Hongfeng
  • SITE SELECTION FOR SATELLITE GEOMETRIC TEST RANGE IN CHINA. Xinxin Zhu, Guo Zhang, Qing Zhu, Xinming Tang
  • ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
  • RESEARCH ON DYNAMIC SYMBOL BASE. Yang ping, Tang Xinming, Wang Shengxiao, Lei Bing, Wang Huibing
  • DETERMINATION OF CHLOROPHYLL CONCENTRATION IN THREE GORGES DAM USING CHRIS/PROBA IMAGE DATA. GAI Li-ya, LIU Zheng-jun,ZHANG Ji-xian
  • RESEARCH ON LAND SANDY DESERTIFICATION WITH REMOTE SENSING -Take Qinghai Lake Areas as an example. Jian Ji, Chen Yuanyuan, Yang wunian, Tang nengfu
  • METHODS AND APPLICATION OF QUALITY ASSESSMENT FOR REMOTE SENSING IMAGE COMPRESSION. ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong
  • ON-ORBIT MTF ESTIMATION METHODS FOR SATELLITE SENSORS. LI Xianbin, JIANG Xiaoguang, Tang Lingli
  • AUTHOR INDEX
  • KEYWORDS INDEX
  • Cover

Full text

267 
THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE 
Li Baipeng 3 ’* Yan Qin a Chen Chunquan 3 
3 China Academy of Surveying and Mapping, 16 Beitaiping Road, Beijing, China, 10039-baipeng001@sohu.com 
KEY WORDS: ASTER, Orthorectified image, accuracy assessment, geolocation, check point, Beijing area 
ABSTRACT: 
ASTER( The Advanced Spacebome Thermal Emission and Reflection Radiometer), a sensor aboard on NASA's Terra satellite, 
provides low-priced Visual and Near-Infrared (VNIR), Thermal Infrared (TIR), and Short Wave Infrared (SWIR) data. The VNIR 
subsystem of the data contains stereo bands ( VNIR3N and VNIR 3B) that can be used for the generation of DEMs. 
The approach of assessment is that choosing the characteristic points from ASTER L3A image first, then the coordinates of the 
specified points were measured by GPS, the geolocation accuracy was got by comparing the image coordinates and GPS coordinates. 
Accuracy assessment result proves that the precision of DEM and orthorectified ASTER image can satisfy the demand of 1: 50, 000 
map in Beijing area. 
1. INTRODUCTION 
1.1 ASTER and ASTER 3D Ortho product 
The Advanced Spacebome Thermal Emission and Reflection 
Radiometer (ASTER) is an advanced multispectral imager that 
was launched on board NASA’s Terra spacecraft in December, 
1999(ERSDAC, 2005). It was placed in a 705 km(at equator) 
sun synchronous orbit with descending node crossing at about 
10:30 am local solar time and the orbital inclination of 98.2 de 
grees. 
The ASTER sensor is designed to provide image data in 14 
visible, near-infrared, short wavelength infrared and thermal 
infrared spectral bands with the spatial resolution of 15m, 30m, 
90m separately . Stereo image data are recorded only in Band 3, 
which is the near-infrared wavelength region from 0.78 to 0.86 
pm, using both nadir and aft-looking telescopes. 
The ASTER instrument has two types of Level-1 data: Level- 
1A and Level-IB data. Level-1A data are formally defined as 
reconstructed, unprocessed instrument data at full resolution. 
According to this definition, the ASTER Level-1A data consist 
of the image data, the radiometric coefficients, the geometric 
coefficients and other auxiliary data without applying the 
coefficients to the image data to maintain the original data 
values. The Level-IB data are generated applying these 
coefficients for radiometric calibration and geometric 
resampling. The ortho image is the image observed just above 
the target point. This means the ortho image includes no terrain 
error. The ortho image can be generated by correcting the 
terrain error using the elevation data for each pixel and the off- 
nadir observation angle. The 3D ortho product is the ortho 
product with the elevation data for each pixel, generated from 
the Level-1 A data. Its formal name is Level-3A01. Figurel-1 
shows the relationship between the 3D ortho data and the 
source data. 
The instrument geometric parameters such as the line of sight 
(LOS) vectors and the pointing axis vectors were precisely 
adjusted through a validation process using numerous GCPs. 
The DEM data, which is processed using only these system 
parameters, has been demonstrated to have extremely good 
accuracy. 
*3D ortho Data are ortho images with elevation data for each 
pixel. 
Figure 1-1 Relationship between the 3D ortho data and the 
source data 
In 3D ortho data processing, the level-1A data is used as input 
image data. Moreover, the Level-4A01X(DEM XYZ) data is 
used as geolocation information for providing ortho graphic 
projection and map coordinates projection features to the 
Level-1A data. After performing collection to the Level-1A 
data and 
the DEM data, a geometric conversion is performed on the 
image data. At that time, the SWIR parallax erros in the along- 
track direction due to the detector alignment and in the cross 
track direction due to the Earth rotation are also corrected. 
The 3D ortho product generated is image data that has been 
subjected to ortho graphic projection processing and map 
coordinates projection processing. The DEM Z (elevation) data 
generated from the Level-4A01 X data for geolocation 
information on the image data, and DEM quality flag data are 
attached to the 3D ortho product after performing the same 
transformation of coordinates as for the image data. The DEM 
data used in the data processing is useful as quality information 
and, at the same time, may improve users’ convenience if the 
DEM geometrically matching image data is attached.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

zhang, jixian. Mapping without the Sun. GITC, 2007.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fifth month of the year?:

I hereby confirm the use of my personal data within the context of the enquiry made.