Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Mapping without the sun

Access restriction

There is no access restriction for this record.

Copyright

The copyright and related rights status of this record has not been evaluated or is not clear. Please refer to the organization that has made the Item available for more information.

Bibliographic data

fullscreen: Mapping without the sun

Monograph

Persistent identifier:
856578517
Author:
Zhang, Jixian
Title:
Mapping without the sun
Sub title:
techniques and applications of optical and SAR imagery fusion ; Chengdu, China, 25 - 27 September 2007
Scope:
1 Online-Ressource (III, 352 Seiten)
Year of publication:
2007
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856578517
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Mapping without the sun
  • Cover
  • ColorChart
  • Title page
  • Table of Content
  • Foreword
  • Scientific Committee:
  • Organizing Committee:
  • DECISION FUSION OF MULTITEMPORAL SAR AND MULTISPECTRAL IMAGERY FOR IMPROVED LAND COVER CLASSIFICATION B. Waske a, J. A. Benediktsson b’*
  • SYNERGISTIC USE OF OPTICAL AND INSAR DATA FOR URBAN IMPERVIOUS SURFACE MAPPING: A CASE STUDY IN HONG KONG. Liming Jiang, Hui Lin, Mingsheng Liao, Limin Yang
  • A NOVEL FUSION METHOD OF SAR AND OPTICAL IMAGES FOR URBAN OBJECT EXTRACTION. Jia Yonghong, Rick S. Blum,Ma Yunxia
  • REAL-TIME SAR SIMULATION FOR CHANGE DETECTION APPLICATIONS BASED ON DATA FUSION. Timo Balz
  • THE OPTIMIZING METHOD OF FUSING SAR WITH OPTICAL IMAGES FOR INFORMATION EXTRACTION. Feng Xie, Yingying Chen, Yi Lin
  • ORTHORECTIFYING SPACEBORNE SAR BY DEM BASED ON FINE REGISTRATION. Hongjian You, Fu Kun
  • DETECTION AND ANALYSIS OF EARTHQUAKE-INDUCED URBAN DISASTER BASED ON INSAR COHERENCE. M. He, X. F. He
  • MULTI-SCALE SAR LAND USE/LAND COVER CLASSIFICATION BASED ON CO-OCCURRENCE PROBABILITIES. Yu ZENG, Jixian ZHANG, J. L.VAN GENDEREN, Haitao LI
  • TERRASAR-X AND TANDEM-X: REVOLUTION IN SPACEBORNE RADAR. Ralf Duering
  • A MULTI-WAVELENGTH IMAGING SYSTEM FOR DETECTION OF FOREIGN FIBERS IN COTTON. Lu Dehao
  • A FUSION ALGORITHM OF HIGH SPATIAL AND SPECTRAL RESOLUTION IMAGES BASED ON ICA. GuoKun Zhang, LeiGuang Wang, Hongyan Zhang
  • A SUPER RESOLUTION RECONSTRUCTION ALGORITHM TO MULTI-TEMPORAL REMOTE SENSING IMAGES. Pingxiang Li, Jixian Zhang, Huanfeng Shen, Liangpei Zhang
  • COMPARISON OF MORPHOLOGICAL PYRAMID AND LAPLACIAN PYRAMID TECHNIQUES FOR FUSING DIFFERENT FOCUSING IMAGES. Jia Yonghong, Fu Xiujun, Yu Hongwei
  • MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
  • PREDICTION AND SIMULATIONS OF MALAYSIAN FOREST FIRES BY MEANS OF RANDOM SPREAD. Jean Serra, Mohd Dini Hairi Suliman, and Mastura Mahmud
  • TEXTURE CLASSIFICATION RESEARCH BASED ON LIFTING-BASED DWT 9/7 WAVELET. Hong Zhang, Ning Shu
  • REMOTE SENSING IMAGE SEGMENTATION BASED SELF-ORGANIZING MAP AT MULTI-SCALE. Zhao Xi-an, Zhang Xue-wen Wei Shi-yan
  • A JOINT SPATIAL-TEMPORAL CLASSIFICATION AND FEATURE BOUNDARY UPDATING MODEL. P. Caccetta
  • THE APPLICATION RESEARCH IN ASSISTANT CLASSIFICATION OF REMOTE SENSING IMAGE BY TEXTURE FEATURES COMBINED WITH SPECTRA FEATURES. Y. M. Fang, X. Q. Zuo, Y. J. Yang, J. H. Feng
  • A KIND OF THE METHODS FOR SAR AND OPTICAL IMAGES FUSION BASED ON THE LIFTING WAVELET. Shao Yongshe, Chen Ying, Li Jing
  • SOIL MOISTURE RETRIEVAL COMBINING OPTICAL AND RADAR DATA DURING SMEX02. Chen Quan, Li Zhen, Tian Bangsen
  • A TARGET DETECTION METHOD BASED ON SAR AND OPTICAL IMAGE DATA FUSION. Sun Mu-han, Zhou Yin-qing, Xu Hua-ping
  • FUSION SAR AND OPTICAL IMAGES TO DETECT OBJECT-SPECIFIC CHANGES. Mu H. Wang, Hai T. Li, Ji. X Zhang ,Jing H. Yang
  • APPLICATION OF DINSAR AND GIS FOR UNDERGROUND MINE SUBSIDENCE MONITORING. YAN Ming-xing, MIAO Fang, WANG Bao-cun, QI Xiao-ying
  • THE DETECTION OF SUBSIDENCE AT PERMANENT FROZEN AREA IN QINGHAI-TIBETAN PLATEAU. Z. Li, C. Xie, Q. Chen
  • RESEARCH ON SURFACE SUBSIDENCE MONITORING WITH INSAR/GPS DATA FUSION IN MINING AREA. ZHANG Ji-chao, SONG Wei-dong, ZHANG Ji-xian, SHI Jin-feng
  • SEVEN YEARS OF MINING SUBSIDENCE DETECTED BY D-InSAR TECHNIQUE IN FUSHUN CITY, CHINA. Y. L. Chen, X. L. Ding, C. Huang, Z. W. Li
  • A METHOD ON HIGH-PRECISION RECTIFICATION AND REGISTRATION OF MULTI-SOURCE REMOTE SENSING IMAGERY. Bin Liu, Guo Zhang, Xiaoyong Zhu, Jianya Gong
  • STUDY ON TIE POINT SELECTION FOR CO-REGISTRATION OF DIFFERENT RESOLUTION IMAGERY. Zhen Xiong, Yun Zhang
  • THE STUDY OF SPACE INTERSECTION MODEL BASED ON DIFFERENT-SOURCE HIGH RESOLUTION RS IMAGERY. Weixi Wang, Qing Zhu
  • AN OPTIMIZATION HIGH-PRECISION REGISTRATION METHOD OF MULTI-SOURCE REMOTE SENSING IMAGES. LIN Yi, JIAN Jianfeng , ZHANG Shaoming, XIE Feng
  • A METHODOLOGY OF LUCC CHANGE DETECTION BASED ON LAND USE SEGMENT. Ning Shu, Hong Zhang, Xue Li, Yan Wang
  • APPLICATION OF MULTI-TEMPORAL TM (ETM+) IMAGE IN MONITORING MINING ACTIVITIES AND RELATED ENVIRONMENT CHANGES: A CASE STUDY AT DAYE, HUBEI, CHINA. Shiyong YU, Zhihua CHEN, Yanxin WANG
  • LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
  • LAND USE CHANGES IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. Sun xiaoxia, Zhang jixian, Liu zhengjun
  • AUTOMATED VEHICLE INFORMATION EXTRACTION FROM ONE PASS OF QUICKBIRD IMAGERY. Zhen Xiong, Yun Zhang
  • CLASSIFICATION OF LAND TYPES IN MINERAL AREAS BASED ON CART. Wenbo Wu, Yuping Chen, Jiaojiao Meng, Tingjun Kang
  • OBJECT-ORIENTED CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MRF AND SVM. GU Haiyan, LI Haitao, ZHANG feng, HAN Yanshun, YANG Jinghui
  • EXTENSIBLE LAND USE AND LAND COVER CLASSIFICATION FRAMEWORK DESIGN BASED ON REMOTELY SENSED DATA. Wang Juanle
  • THE ROAD EXTRACTION IN THE AREA COVERED WITH HIGH VEGETATION USING THE FUSION IMAGE OF SAR AND TM. Shen Jin-li, Yu Wu-yi, Qi Xiao-ping, Zhang Yi-min
  • DISCRETE WAVELET-BASED FUSION OF TM MULTI-SPECTRAL IMAGE AND SAR IMAGE DATA. Liang Shouzhen, Li Lanyong
  • FUSING SAR AND OPTICAL IMAGES BASED ON COMPLEX WAVELET TRANSFORM. Shuai Xing, Qing Xu
  • A COMPREHENSIVE QUALITY EVALUATION METHOD OF INFORMATION FUSION FROM HIGH-RESOLUTION AIRBORNE SAR AND SPOT5 IMAGES. Wenqing Dong, Qin Yan,
  • A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
  • A NOVEL IMAGE FUSION METHOD BASED ON 2DPCA IN REMOTE SENSING. Xue-ming Wu, Wu-nian Yang
  • A METHOD TO DETERMINE SPATIAL RESOLUTION OF REMOTE SENSING FUSED IMAGE QUANTITATIVELY. X. J. Yue, L. Yan, G. M. Huang
  • A NEW PAN-SHARPENING ALGORITHM AND ITS APPLICATION IN GEOGRAPHIC FEATURES INFORMATION EXTRACTION. ZHU Lijiang
  • RESEARCH ON THE PROCESS OF LAND USE/COVER CHANGE IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. SHAO Huai-Yong, XIAN Wei, LIU Xue-Mei, YANG Wu-Nian
  • THE STUDY OF LAND USE CHANGE DETECTION BASED ON SOLE PERIOD RS IMAGE. Song Weidong, Wang Jingxue, Qin Yong
  • ANALYSIS OF THE LAND USE OF SHENYANG MINING DISTRICT AND ITS DRIVING FORCE. Kaixuan Zhang, Wenbo Wu, Chongchang Wang, Tingjun Kang
  • REMOTE-SENSING IMAGE COMPRESSION BASED ON FRACTAL THEORY. Chao Mu, Qin Yan, Jie Yu, Huiling Qin
  • MATRIX DECOMPOSITION AND MATRIX SOLVERS IN PHOTOGRAMMETRY. Cheng Chunquan, Deng Kazhong, Zhang Jixian, YanQin
  • INVESTIGATING SEVERAL POINT CLOUD REGISTRATION MOTHEDS. Luo Dean, Zhou Keqin, Huang Jizhong
  • THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
  • EPIPOLAR RESAMPLING OF DIFFERENT TYPES OF SATELLITE IMAGERY. Jiaying Liu, Guo Zhang, Deren Li
  • REFINEMENT AND EVALUATION OF BEIJING-1 ORTHORECTIFICATION BASED ON RFM. Jianming Gong, Xiaomei Yang, Chenghu Zhou, Xiaoyu Sun, Cunjin Xue
  • LAND COVER CLASSIFICATION BY IMPROVED FUZZY C-MEAN CLASSIFIER. ZHAO Quan-hua, SONG Wei-dong, Bao Yong
  • RESEARCH ON GRIDDING PROCESSING STRATEGIES OF REMOTE SENSING IMAGE SEGMENTATION BY REGION GROWTH. ZHU Hong-chun, ZHANG Ji-xian, LI Hai-tao, YANG Jing-hui, LIU Hai-ying
  • TEXTURE ANALYSIS IN INFORMATION EXTRACT IN THE HIGH RESOLUTION RS IMAGES LU Shuqiang
  • THE STUDY OF REMOTE SENSING IMAGE INFORMATION EXTRACTION TECHNIQUES BASED ON KNOWLEDGE. Wenbo Wu, Jiaojiao Meng, Yuping Chen, Jing Chen
  • A NEW METHOD OF SIMULATION OF INTERFEROGRAM IMAGE FOR REPEAT-PASS SAR SYSTEM. Jianmin Zhou, Zhen Li, Xinwu Li, Chou Xie
  • COMPARISON AND IMPROVEMENT OF POSITION METHODS OF AIRBORNE STEREO SAR IMAGES. H. D. Fan, K. Z. Deng, G. M.Huang, Z. Zhao., X. J. Yue, X. M. Luo, Y. F. Ling
  • STUDY ON TOPOGRAPHIC MAP UPDATING WITH HIGH RESOLUTION AIRBORNE SAR IMAGE. X .M. Luo, G. M. Huang, Z. Zhao
  • AN EXPERIMENT OF HIGH RESOLUTION SAR IMAGE IN DYNAMIC MONITORING THE CHANGE OF CONSTRUCTION LAND. CaoYinxuan, Zhang Yonghong, YanQin, ZhaoZheng
  • RESEARCH ON STATISTICS AND SPATIAL ANALYSIS OF DRAINAGE BASIN'S IMPORTANT GEOGRAPHICAL ELEMENTS. Liu Ping, Liu Jiping, Zhao Rong
  • THE RESEARCH AND ESTABLISHMENT OF IMAGE DATABASE SYSTEM BASED ON ORACLE. Li Lanyong, Song Weidong, Chen Zhaoliang, Zhao Hongfeng
  • SITE SELECTION FOR SATELLITE GEOMETRIC TEST RANGE IN CHINA. Xinxin Zhu, Guo Zhang, Qing Zhu, Xinming Tang
  • ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
  • RESEARCH ON DYNAMIC SYMBOL BASE. Yang ping, Tang Xinming, Wang Shengxiao, Lei Bing, Wang Huibing
  • DETERMINATION OF CHLOROPHYLL CONCENTRATION IN THREE GORGES DAM USING CHRIS/PROBA IMAGE DATA. GAI Li-ya, LIU Zheng-jun,ZHANG Ji-xian
  • RESEARCH ON LAND SANDY DESERTIFICATION WITH REMOTE SENSING -Take Qinghai Lake Areas as an example. Jian Ji, Chen Yuanyuan, Yang wunian, Tang nengfu
  • METHODS AND APPLICATION OF QUALITY ASSESSMENT FOR REMOTE SENSING IMAGE COMPRESSION. ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong
  • ON-ORBIT MTF ESTIMATION METHODS FOR SATELLITE SENSORS. LI Xianbin, JIANG Xiaoguang, Tang Lingli
  • AUTHOR INDEX
  • KEYWORDS INDEX
  • Cover

Full text

The QuickBird image products can be classifieds as into basic 
images, standard images, ortho-photos and stereo-photo pairs 
usually. They are also classed into panchromatic band image 
data, multispectral image data, products package of 
panchromatic band image data and multispectral image data and 
fusion image data (true color or false color) based on the 
integrated bands. 
2.2 The brief introductions of experimental satellite photos 
The experimental satellite photos are single panchromatic of 
standard products and multispectral satellite photos taken on 
January 7, 2003 of USA time in Fuxin City of Liaoning 
Province. The ground sampling resolution is 0.636m, the 
reference ellipsoid is WGS84. the projection is transverse 
Mercator projection, the heliacal horizontal angle is 159.671° 
and the heliacal zenith angle is 23.0836°, the satellite horizontal 
angle is 99.4251°, the satellite zenith angle is 76.867°, the 
orbital perspective angle is 0.0473414° and the vertical orbital 
perspective angle is 12.2236°. The satellite position and 
situation are measured accurately so that the quality in good 
condition. The ground intervals both in longitudinal and lateral 
directions are 0.6m and the mode is quadrate convolution for 
resample. The other information is almost the same of 
multispectral satellite photos and panchromatic satellite photos 
except that they all have red, green, and blue bands. Meanwhile, 
the intervals are 2.542m in ground sampling and 2.4m in 
resample. 
3. PRECISION EVALUATIONS 
3.1 Images preprocessing 
3.1.1 Clipping and fusion of images: The human eyes are 
limited in the ability of density of black and white, in which 
only can reach ten gray-levels, but is higher in the 
discrimination of color images. If the average resolution of 
human eyes is AA — 3uiYl , more than hundred of colors can 
be distinguished and this only is one of elements in colors. If 
the other two factors saturation and lightness are considered, the 
level of distinguishing different colors for human eyes is far 
greater than that of distinguishing between black and white. In 
order to take advantage of colors in remote sensing image 
interpretation, panchromatic images and multispectral images 
can be merged, so that the characteristics of both the high 
spatial resolution of panchromatic images and the interpretation 
of multispectral image can be reserved. The main-elements 
analysis method of Erdas is applied in fusion, the quadrate 
convolution mode used in resample and a combination of 
bands-1, -2 and -3 in image display. Because the range of 
satellite photos we got is very large about 200 km 2 , the amount 
of data is too much, that is, the panchromatic satellite photos 
are about 1.7 Gbit, the multispectral satellite photos are about 
700 Mbit, and the data after fusing is near 7 Gbit. Considering 
the data quantity and convenience in data processing, an image 
around the Liaoning Technology University approximately one 
square kilometers scope is captured where the relief is flat (the 
difference in elevation is less than one meter) and crowded by 
buildings. 
3.1.2 Determination of internal geometric precision: The 
QuickBird standard image is corrected by using a rough DEM 
model, and ground and land features are standardized on 
WGS84 reference ellipsoidal surface, so that it isn’t 
orthographic images, because the degree of precision is quite 
low. The QuickBird standard images should have better internal 
geometric precision. Hence after systematic correction, 
generally speaking, if the interior geometric error of satellite 
image is smaller than or equal to a pixel, it will satisfy the 
precision request in the most remote sensing application. Erdas 
remote sensing software carries on the image geometric 
rectification by the way of the integral correction, and if the 
internal geometric precision high, then the image precision will 
be better after rectification. Therefore, an analyzing to the 
internal geometric precision of the empirical data should be 
undertaken. The concreting method is that by choosing 15 
control points on the topographic diagram to discover the 
corresponding image points in the fusion image, the root mean 
square of length difference between each line connecting 
control points on the image and its corresponding lines on the 
topographic map, that is 
Where, Ad t = d mi - d gi , (z = 1,2,3, ••*,«), d mi is the 
length of the line i connecting the control points on the image, 
d . is the length of the corresponding lines on the topographic 
map, and n is the total number of the lines between control 
points. 
Fifteen control points are selected in this experiment, therefore 
there are 105 control sides altogether, and after 
calculation, 8 = 0.5723m < 0.6m it is smaller than a pixel 
in which indicates that the internal precision is quite high from 
using the QuickBird standard images. 
3.2 Accurate geometric rectification of images 
For the purpose of relationship registration of the remote 
sensing images and the geographic space on site, which is 
called location and orientation, the geometric rectification to the 
images must be carried out before the evaluation of the interior 
position precision. The conventional methods for the geometric 
rectification are divided into optical rectification and the digital 
one. At present, since the images are usually based on the 
digital data, the digital geometric rectification is generally used. 
Actually, there are two kinds of methods applied: one is the 
collinear equations using digital elevation model (DEM) and 
corresponding imaging equation and another is control point 
computation method based on a certain mathematical model, in 
which the polynomial method is typical one. Theoretically, the 
method of collinearly equations is stricter than the polynomials, 
specially introduced the ground elevation information in the 
process, so that is superior to the polynomials in the case of 
ground undulation. Although the method is higher in precision, 
but the DEM model must be established firstly, otherwise the 
rectification will become difficulty and complicated if lack of 
the digital ground elevation. Moreover, in satellite dynamic 
sensor, the position and the attitude angles of sensor are
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

zhang, jixian. Mapping without the Sun. GITC, 2007.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many letters is "Goobi"?:

I hereby confirm the use of my personal data within the context of the enquiry made.