Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Mapping without the sun

Access restriction

There is no access restriction for this record.

Copyright

The copyright and related rights status of this record has not been evaluated or is not clear. Please refer to the organization that has made the Item available for more information.

Bibliographic data

fullscreen: Mapping without the sun

Monograph

Persistent identifier:
856578517
Author:
Zhang, Jixian
Title:
Mapping without the sun
Sub title:
techniques and applications of optical and SAR imagery fusion ; Chengdu, China, 25 - 27 September 2007
Scope:
1 Online-Ressource (III, 352 Seiten)
Year of publication:
2007
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856578517
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Mapping without the sun
  • Cover
  • ColorChart
  • Title page
  • Table of Content
  • Foreword
  • Scientific Committee:
  • Organizing Committee:
  • DECISION FUSION OF MULTITEMPORAL SAR AND MULTISPECTRAL IMAGERY FOR IMPROVED LAND COVER CLASSIFICATION B. Waske a, J. A. Benediktsson b’*
  • SYNERGISTIC USE OF OPTICAL AND INSAR DATA FOR URBAN IMPERVIOUS SURFACE MAPPING: A CASE STUDY IN HONG KONG. Liming Jiang, Hui Lin, Mingsheng Liao, Limin Yang
  • A NOVEL FUSION METHOD OF SAR AND OPTICAL IMAGES FOR URBAN OBJECT EXTRACTION. Jia Yonghong, Rick S. Blum,Ma Yunxia
  • REAL-TIME SAR SIMULATION FOR CHANGE DETECTION APPLICATIONS BASED ON DATA FUSION. Timo Balz
  • THE OPTIMIZING METHOD OF FUSING SAR WITH OPTICAL IMAGES FOR INFORMATION EXTRACTION. Feng Xie, Yingying Chen, Yi Lin
  • ORTHORECTIFYING SPACEBORNE SAR BY DEM BASED ON FINE REGISTRATION. Hongjian You, Fu Kun
  • DETECTION AND ANALYSIS OF EARTHQUAKE-INDUCED URBAN DISASTER BASED ON INSAR COHERENCE. M. He, X. F. He
  • MULTI-SCALE SAR LAND USE/LAND COVER CLASSIFICATION BASED ON CO-OCCURRENCE PROBABILITIES. Yu ZENG, Jixian ZHANG, J. L.VAN GENDEREN, Haitao LI
  • TERRASAR-X AND TANDEM-X: REVOLUTION IN SPACEBORNE RADAR. Ralf Duering
  • A MULTI-WAVELENGTH IMAGING SYSTEM FOR DETECTION OF FOREIGN FIBERS IN COTTON. Lu Dehao
  • A FUSION ALGORITHM OF HIGH SPATIAL AND SPECTRAL RESOLUTION IMAGES BASED ON ICA. GuoKun Zhang, LeiGuang Wang, Hongyan Zhang
  • A SUPER RESOLUTION RECONSTRUCTION ALGORITHM TO MULTI-TEMPORAL REMOTE SENSING IMAGES. Pingxiang Li, Jixian Zhang, Huanfeng Shen, Liangpei Zhang
  • COMPARISON OF MORPHOLOGICAL PYRAMID AND LAPLACIAN PYRAMID TECHNIQUES FOR FUSING DIFFERENT FOCUSING IMAGES. Jia Yonghong, Fu Xiujun, Yu Hongwei
  • MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
  • PREDICTION AND SIMULATIONS OF MALAYSIAN FOREST FIRES BY MEANS OF RANDOM SPREAD. Jean Serra, Mohd Dini Hairi Suliman, and Mastura Mahmud
  • TEXTURE CLASSIFICATION RESEARCH BASED ON LIFTING-BASED DWT 9/7 WAVELET. Hong Zhang, Ning Shu
  • REMOTE SENSING IMAGE SEGMENTATION BASED SELF-ORGANIZING MAP AT MULTI-SCALE. Zhao Xi-an, Zhang Xue-wen Wei Shi-yan
  • A JOINT SPATIAL-TEMPORAL CLASSIFICATION AND FEATURE BOUNDARY UPDATING MODEL. P. Caccetta
  • THE APPLICATION RESEARCH IN ASSISTANT CLASSIFICATION OF REMOTE SENSING IMAGE BY TEXTURE FEATURES COMBINED WITH SPECTRA FEATURES. Y. M. Fang, X. Q. Zuo, Y. J. Yang, J. H. Feng
  • A KIND OF THE METHODS FOR SAR AND OPTICAL IMAGES FUSION BASED ON THE LIFTING WAVELET. Shao Yongshe, Chen Ying, Li Jing
  • SOIL MOISTURE RETRIEVAL COMBINING OPTICAL AND RADAR DATA DURING SMEX02. Chen Quan, Li Zhen, Tian Bangsen
  • A TARGET DETECTION METHOD BASED ON SAR AND OPTICAL IMAGE DATA FUSION. Sun Mu-han, Zhou Yin-qing, Xu Hua-ping
  • FUSION SAR AND OPTICAL IMAGES TO DETECT OBJECT-SPECIFIC CHANGES. Mu H. Wang, Hai T. Li, Ji. X Zhang ,Jing H. Yang
  • APPLICATION OF DINSAR AND GIS FOR UNDERGROUND MINE SUBSIDENCE MONITORING. YAN Ming-xing, MIAO Fang, WANG Bao-cun, QI Xiao-ying
  • THE DETECTION OF SUBSIDENCE AT PERMANENT FROZEN AREA IN QINGHAI-TIBETAN PLATEAU. Z. Li, C. Xie, Q. Chen
  • RESEARCH ON SURFACE SUBSIDENCE MONITORING WITH INSAR/GPS DATA FUSION IN MINING AREA. ZHANG Ji-chao, SONG Wei-dong, ZHANG Ji-xian, SHI Jin-feng
  • SEVEN YEARS OF MINING SUBSIDENCE DETECTED BY D-InSAR TECHNIQUE IN FUSHUN CITY, CHINA. Y. L. Chen, X. L. Ding, C. Huang, Z. W. Li
  • A METHOD ON HIGH-PRECISION RECTIFICATION AND REGISTRATION OF MULTI-SOURCE REMOTE SENSING IMAGERY. Bin Liu, Guo Zhang, Xiaoyong Zhu, Jianya Gong
  • STUDY ON TIE POINT SELECTION FOR CO-REGISTRATION OF DIFFERENT RESOLUTION IMAGERY. Zhen Xiong, Yun Zhang
  • THE STUDY OF SPACE INTERSECTION MODEL BASED ON DIFFERENT-SOURCE HIGH RESOLUTION RS IMAGERY. Weixi Wang, Qing Zhu
  • AN OPTIMIZATION HIGH-PRECISION REGISTRATION METHOD OF MULTI-SOURCE REMOTE SENSING IMAGES. LIN Yi, JIAN Jianfeng , ZHANG Shaoming, XIE Feng
  • A METHODOLOGY OF LUCC CHANGE DETECTION BASED ON LAND USE SEGMENT. Ning Shu, Hong Zhang, Xue Li, Yan Wang
  • APPLICATION OF MULTI-TEMPORAL TM (ETM+) IMAGE IN MONITORING MINING ACTIVITIES AND RELATED ENVIRONMENT CHANGES: A CASE STUDY AT DAYE, HUBEI, CHINA. Shiyong YU, Zhihua CHEN, Yanxin WANG
  • LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
  • LAND USE CHANGES IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. Sun xiaoxia, Zhang jixian, Liu zhengjun
  • AUTOMATED VEHICLE INFORMATION EXTRACTION FROM ONE PASS OF QUICKBIRD IMAGERY. Zhen Xiong, Yun Zhang
  • CLASSIFICATION OF LAND TYPES IN MINERAL AREAS BASED ON CART. Wenbo Wu, Yuping Chen, Jiaojiao Meng, Tingjun Kang
  • OBJECT-ORIENTED CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MRF AND SVM. GU Haiyan, LI Haitao, ZHANG feng, HAN Yanshun, YANG Jinghui
  • EXTENSIBLE LAND USE AND LAND COVER CLASSIFICATION FRAMEWORK DESIGN BASED ON REMOTELY SENSED DATA. Wang Juanle
  • THE ROAD EXTRACTION IN THE AREA COVERED WITH HIGH VEGETATION USING THE FUSION IMAGE OF SAR AND TM. Shen Jin-li, Yu Wu-yi, Qi Xiao-ping, Zhang Yi-min
  • DISCRETE WAVELET-BASED FUSION OF TM MULTI-SPECTRAL IMAGE AND SAR IMAGE DATA. Liang Shouzhen, Li Lanyong
  • FUSING SAR AND OPTICAL IMAGES BASED ON COMPLEX WAVELET TRANSFORM. Shuai Xing, Qing Xu
  • A COMPREHENSIVE QUALITY EVALUATION METHOD OF INFORMATION FUSION FROM HIGH-RESOLUTION AIRBORNE SAR AND SPOT5 IMAGES. Wenqing Dong, Qin Yan,
  • A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
  • A NOVEL IMAGE FUSION METHOD BASED ON 2DPCA IN REMOTE SENSING. Xue-ming Wu, Wu-nian Yang
  • A METHOD TO DETERMINE SPATIAL RESOLUTION OF REMOTE SENSING FUSED IMAGE QUANTITATIVELY. X. J. Yue, L. Yan, G. M. Huang
  • A NEW PAN-SHARPENING ALGORITHM AND ITS APPLICATION IN GEOGRAPHIC FEATURES INFORMATION EXTRACTION. ZHU Lijiang
  • RESEARCH ON THE PROCESS OF LAND USE/COVER CHANGE IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. SHAO Huai-Yong, XIAN Wei, LIU Xue-Mei, YANG Wu-Nian
  • THE STUDY OF LAND USE CHANGE DETECTION BASED ON SOLE PERIOD RS IMAGE. Song Weidong, Wang Jingxue, Qin Yong
  • ANALYSIS OF THE LAND USE OF SHENYANG MINING DISTRICT AND ITS DRIVING FORCE. Kaixuan Zhang, Wenbo Wu, Chongchang Wang, Tingjun Kang
  • REMOTE-SENSING IMAGE COMPRESSION BASED ON FRACTAL THEORY. Chao Mu, Qin Yan, Jie Yu, Huiling Qin
  • MATRIX DECOMPOSITION AND MATRIX SOLVERS IN PHOTOGRAMMETRY. Cheng Chunquan, Deng Kazhong, Zhang Jixian, YanQin
  • INVESTIGATING SEVERAL POINT CLOUD REGISTRATION MOTHEDS. Luo Dean, Zhou Keqin, Huang Jizhong
  • THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
  • EPIPOLAR RESAMPLING OF DIFFERENT TYPES OF SATELLITE IMAGERY. Jiaying Liu, Guo Zhang, Deren Li
  • REFINEMENT AND EVALUATION OF BEIJING-1 ORTHORECTIFICATION BASED ON RFM. Jianming Gong, Xiaomei Yang, Chenghu Zhou, Xiaoyu Sun, Cunjin Xue
  • LAND COVER CLASSIFICATION BY IMPROVED FUZZY C-MEAN CLASSIFIER. ZHAO Quan-hua, SONG Wei-dong, Bao Yong
  • RESEARCH ON GRIDDING PROCESSING STRATEGIES OF REMOTE SENSING IMAGE SEGMENTATION BY REGION GROWTH. ZHU Hong-chun, ZHANG Ji-xian, LI Hai-tao, YANG Jing-hui, LIU Hai-ying
  • TEXTURE ANALYSIS IN INFORMATION EXTRACT IN THE HIGH RESOLUTION RS IMAGES LU Shuqiang
  • THE STUDY OF REMOTE SENSING IMAGE INFORMATION EXTRACTION TECHNIQUES BASED ON KNOWLEDGE. Wenbo Wu, Jiaojiao Meng, Yuping Chen, Jing Chen
  • A NEW METHOD OF SIMULATION OF INTERFEROGRAM IMAGE FOR REPEAT-PASS SAR SYSTEM. Jianmin Zhou, Zhen Li, Xinwu Li, Chou Xie
  • COMPARISON AND IMPROVEMENT OF POSITION METHODS OF AIRBORNE STEREO SAR IMAGES. H. D. Fan, K. Z. Deng, G. M.Huang, Z. Zhao., X. J. Yue, X. M. Luo, Y. F. Ling
  • STUDY ON TOPOGRAPHIC MAP UPDATING WITH HIGH RESOLUTION AIRBORNE SAR IMAGE. X .M. Luo, G. M. Huang, Z. Zhao
  • AN EXPERIMENT OF HIGH RESOLUTION SAR IMAGE IN DYNAMIC MONITORING THE CHANGE OF CONSTRUCTION LAND. CaoYinxuan, Zhang Yonghong, YanQin, ZhaoZheng
  • RESEARCH ON STATISTICS AND SPATIAL ANALYSIS OF DRAINAGE BASIN'S IMPORTANT GEOGRAPHICAL ELEMENTS. Liu Ping, Liu Jiping, Zhao Rong
  • THE RESEARCH AND ESTABLISHMENT OF IMAGE DATABASE SYSTEM BASED ON ORACLE. Li Lanyong, Song Weidong, Chen Zhaoliang, Zhao Hongfeng
  • SITE SELECTION FOR SATELLITE GEOMETRIC TEST RANGE IN CHINA. Xinxin Zhu, Guo Zhang, Qing Zhu, Xinming Tang
  • ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
  • RESEARCH ON DYNAMIC SYMBOL BASE. Yang ping, Tang Xinming, Wang Shengxiao, Lei Bing, Wang Huibing
  • DETERMINATION OF CHLOROPHYLL CONCENTRATION IN THREE GORGES DAM USING CHRIS/PROBA IMAGE DATA. GAI Li-ya, LIU Zheng-jun,ZHANG Ji-xian
  • RESEARCH ON LAND SANDY DESERTIFICATION WITH REMOTE SENSING -Take Qinghai Lake Areas as an example. Jian Ji, Chen Yuanyuan, Yang wunian, Tang nengfu
  • METHODS AND APPLICATION OF QUALITY ASSESSMENT FOR REMOTE SENSING IMAGE COMPRESSION. ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong
  • ON-ORBIT MTF ESTIMATION METHODS FOR SATELLITE SENSORS. LI Xianbin, JIANG Xiaoguang, Tang Lingli
  • AUTHOR INDEX
  • KEYWORDS INDEX
  • Cover

Full text

67 
;ical pyramid 
>n multi-focus 
l to indicators 
d based on the 
d quantitative 
ed fusion for 
our algorithm 
ts obtained so 
he multifocus 
in the future. 
MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE 
INSAR IMAGERY 
Z. Lu 
U.S. Geological Survey, Center for Earth Resources Observation and Science and Cascades Volcano Observatory, Vancouver, WA 
98683, USA; phone: 360-993-8911, fax: 360-993-8981, email: lu@usgs.gov 
KEY WORDS: Synthetic aperture radar (SAR), Interferometric SAR (InSAR), Natural hazards 
image fusion 
ries on Signai 
l pyramid as a 
fions, vol. 31, 
nentation and 
cooperatives 
MC, voi. 12, 
>ing using a 
715-727. 
;olution image 
<orf on CWI, 
decomposition. 
ratitude to the 
; and for some 
ABSTRACT: 
Interferometric synthetic aperture radar (InSAR) imaging is an all-weather instrument capable of measuring ground-surface 
deformation and inferring changes in land surface characteristics. The interferometric products, derived from European Remote 
sensing Satellite 1 (ERS-1), European Remote-sensing Satellite 2 (ERS-2), and European Environmental Satellite (Envisat), 
Japanese Earth Resources Satellite 1 (JERS-1) and Japanese Advanced Land Observing Satellite (ALOS), and Canadian Radar 
Satellite 1 (Radarsat-1) synthetic aperture radar (SAR) images, enable the characterization of natural hazards induced by volcanic, 
seismic, and hydrogeologic processes, landslides, wild fires, etc. Measuring how a volcano’s surface deforms before, during, and 
after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial 
and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture 
dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated 
hazards. Mapping surface subsidence and uplift related to extraction and injection of fluids in groundwater aquifers provides 
fundamental data on aquifer properties and processes and improves our ability to mitigate undesired consequences. Monitoring 
dynamic water-level changes beneath wetlands improves hydrological modeling predictions and enhances the assessment of future 
flood events over wetlands. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and severities for 
wild fire management and control. These studies demonstrate that all-weather satellite radar imagery is critical for studying various 
natural hazards and plays an increasingly important role in better understanding and eventually forecasting natural hazards. 
1. HOW INSAR WORKS 
Interferometric synthetic aperture radar (InSAR) involves the 
use of two or more synthetic aperture radar (SAR) images of the 
same area to extract landscape topography and its deformation 
patterns. A SAR system transmits electromagnetic waves at a 
wavelength that can range from a few millimeters to tens of 
centimeters and therefore can operate during day and night 
under all weather conditions. Using a SAR processing 
technique (Curlander and McDonough, 1991), both the intensity 
and phase of the reflected (or backscattered) radar signal of 
each ground resolution element (a few meters to tens of meters) 
can be calculated in the form of a complex-valued SAR image 
that represents the reflectivity of the ground surface: the 
amplitude or intensity of the SAR image is determined 
primarily by terrain slope, surface roughness, and dielectric 
constants, whereas the phase of the SAR image is determined 
primarily by the distance between the satellite antenna and the 
ground targets. InSAR imaging uses the interaction of 
electromagnetic waves, referred to as interference, to measure 
precise distances between the satellite antenna and ground 
resolution elements to derive landscape topography and its 
subtle change in elevation. 
InSAR is formed by combining, or “interfering,” radar signals 
from two spatially or temporally separated antennas. The spatial 
separation of the two antennas is called the baseline. The two 
antennas may be mounted on a single platform for simultaneous 
interferometry, which is the usual implementation for aircraft 
and spacebome systems such as the Topographic SAR 
(TOPSAR) and the Shuttle Radar Topography Mission (SRTM) 
systems, which were created for generating high-resolution, 
high-precision digital elevation models (DEMs) over large 
regions. Alternatively, InSAR can be created by using a single 
antenna on an airborne or spacebome platform in nearly 
identical repeating flight orbits for repeat-pass interferometry 
(Massonnet and Feigl, 1998; Lu et al., 2007a). In the latter case, 
even though the antennas do not illuminate a given area at the 
same time, the two sets of signals that are recorded during the 
two passes will be highly correlated to produce an 
interferogram if the scattering properties of the ground surface 
remain undisturbed between viewings. The topographic effects 
in the interferogram can be removed with a synthetic 
interferogram created from an accurate DEM and the 
knowledge of InSAR imaging geometry. In this configuration, 
InSAR is capable of measuring ground-surface deformation 
with a precision of centimeters or sub-centimeters for C-band 
sensors or a few centimeters for L-band sensors at a spatial 
resolution of tens-of-meters over a large region. This is the 
typical implementation for major spacebome sensors, including 
European Remote-sensing Satellite 1 (ERS-1) (operated 1991— 
2000, C-band at wavelength k = 5.66 cm), Japanese Earth 
Resources Satellite 1 (JERS-1) (operated 1992-1998, L-band, k 
= 23.5 cm), Shuttle Imaging Radar-C (SIR-C) (operated April- 
October 1994, X-, C-, and L-band, k = 3.1 cm, 5.66 cm, and 
24.0 cm, respectively), European Remote-sensing Satellite 2 
(ERS-2) (operating 1995-present, C-band, k = 5.66 cm), 
Canadian Radar Satellite 1 (Radarsat-1) (operating 1995- 
present, C-band, k = 5.66 cm), European Environmental 
Satellite (Envisat) (operating 2002-present, C-band, k = 5.63 
cm), Japanese Advanced Land Observing Satellite (ALOS) 
(operating January 2006-present, L-band, k = 23.6 cm), and 
German TerraSAR-X (operating June 2007-present, X-band, k 
= 3.1 cm).
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

zhang, jixian. Mapping without the Sun. GITC, 2007.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many grams is a kilogram?:

I hereby confirm the use of my personal data within the context of the enquiry made.