Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Proceedings of the Symposium on Global and Environmental Monitoring (Part 1)

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Proceedings of the Symposium on Global and Environmental Monitoring (Part 1)

Multivolume work

Persistent identifier:
856665355
Title:
Proceedings of the Symposium on Global and Environmental Monitoring
Sub title:
techniques and impacts ; September 17 - 21, 1990, Victoria Conference Centre, Victoria, British Columbia, Canada
Year of publication:
1990
Place of publication:
Victoria, BC
Publisher of the original:
[Verlag nicht ermittelbar]
Identifier (digital):
856665355
Language:
English
Document type:
Multivolume work

Volume

Persistent identifier:
856669164
Title:
Proceedings of the Symposium on Global and Environmental Monitoring
Sub title:
techniques and impacts; September 17 - 21, 1990, Victoria Conference Centre, Victoria, British Columbia, Canada
Scope:
XIV, 912 Seiten
Year of publication:
1990
Place of publication:
Victoria, BC
Publisher of the original:
[Verlag nicht ermittelbar]
Identifier (digital):
856669164
Illustration:
Illustrationen, Diagramme, Karten
Signature of the source:
ZS 312(28,7,1)
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Editor:
International Society for Photogrammetry and Remote Sensing, Commission of Photographic and Remote Sensing Data
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Volume
Collection:
Earth sciences

Chapter

Title:
[WP-1 ADVANCED COMPUTING FOR INTERPRETATION]
Document type:
Multivolume work
Structure type:
Chapter

Chapter

Title:
LANDUSE CLASSES DISCRIMINATION WITH SATELLITE IMAGES BASED ON SPECTRAL KNOWLEDGE. Vladimir Cervenka , Karel Charvót
Document type:
Multivolume work
Structure type:
Chapter

Contents

Table of contents

  • Proceedings of the Symposium on Global and Environmental Monitoring
  • Proceedings of the Symposium on Global and Environmental Monitoring (Part 1)
  • Cover
  • PREFACE
  • ISPRS COMMISSION VII MID-TERM SYMPOSIUM SPONSORS
  • ISPRS COMMISSION VII MID-TERM SYMPOSIUM HOST COMMITTEE
  • ISPRS COMMISSION VII MID-TERM SYMPOSIUM EXECUTIVE COUNCIL
  • ISPRS COMMISSION VII 1988-92 WORKING GROUPS
  • TABLE OF CONTENTS VOLUME 28 PART 7-1
  • [TA-1 OPENING PLENARY SESSION]
  • [TP-1 GLOBAL MONITORING (1)]
  • [TP-2 SPECTRAL SIGNATURES]
  • [TP-3 OCEAN/COASTAL ZONE MONITORING]
  • [TP-4 SOILS]
  • [TP-5 DATA STABILITY AND CONTINUITY]
  • [WA-1 KNOWLEDGE-BASED TECHNIQUES/ SYSTEMS FOR DATA FUSION]
  • [WA-2 AGRICULTURE]
  • [WA-3 DEMOGRAPHIC AND URBAN APPLICATIONS]
  • [WA-4 GLOBAL MONITORING (2)]
  • [WA-5 WATER RESOURCES]
  • [WP-1 ADVANCED COMPUTING FOR INTERPRETATION]
  • DEVELOPMENT OF A DATA SET INDEX FOR THE GLOBAL CLIMATE RESEARCH PROGRAM. Donald R. Block and Edward H. Barrows
  • TERRAIN CLASSIFICATION BY ARTIFICIAL NEURAL NETWORKS. Joji Iisaka, Wendy Russell
  • BACK PROPAGATION NETWORK FOR IRRIGATION SUITABILITY CLASSIFICATION OF STRESSED LANDS: A CASE STUDY IN PAKISTAN. Gauhar Rehmann, Abdul Fatah Shaikh, M. A. Sanjrani
  • LANDUSE CLASSES DISCRIMINATION WITH SATELLITE IMAGES BASED ON SPECTRAL KNOWLEDGE. Vladimir Cervenka , Karel Charvót
  • DETECTING TEXTURE EDGES FROM IMAGES. HE Dong-chen and WANG Li
  • COMPARISON OF SOME TEXTURE CLASSIFIERS. Einari Kilpela and Jan Heikkila
  • CONTEXTUAL BAYESIAN CLASSIFIER. Michal Haindl
  • A Method for Proportion Estimation of Mixed Pixel (MIXEL) by Means of Inversion Problem Solving. Kohei Arai and Yasunori Terayama
  • [WP-2 LAND USE AND LAND COVER]
  • [WP-3 FOREST INVENTORY APPLICATIONS]
  • [WP-4 INTERPRETATION AND MODELLING]
  • [WP-5 LARGE SHARED DATABASES]
  • [THA-1 SECOND PLENARY SESSION]
  • [THP-1 HIGH SPECTRAL RESOLUTION MEASUREMENT]
  • [THP-2 GIS INTEGRATION]
  • [THP-3 ENVIRONMENTAL IMPACT ASSESSMENT]
  • [THP-4 MICROWAVE SENSING]
  • [THP-5 IMAGE INTERPRETATION AND ANALYSIS]
  • [FA-1 TOPOGRAPHIC ANALYSIS]
  • [FA-2 GLOBAL MONITORING (3)]
  • [FA-3 FOREST DAMAGE]
  • Cover

Full text

LANDUSE CLASSES DISCRIMINATION WITH SATELLITE IMAGES 
8ASE0 ON SPECTRAL KNOWLEDGE 
Vladimir Cervenka , Karel Charvbt 
Geodetic and Cartographic Enterprise, Prague 
Earth Remote Sensing Centre 
Introduction 
At present, muitispectrai 
in many remote sensing 
attention has also been 
automatic interpretation 
principal approaches to 
unsupervised one. 
image data are frequently exploited 
applications. Therefore, a great 
paid to the development of their 
(classification). There are two 
the classification: supervised and 
A method of supervised classification of 
data, based on spectral knowledge, is 
contribution. Training data are collected f 
using the supervised classification. The 
samples has to be representative, but ra 
creation of sufficiently representative tr 
a serious problem. Satellite images cover 
nevertheless it is difficult to find suitabl 
which cover the whole feature space. 
muitispectrai image 
described in this 
or every class when 
choice of training 
ndom. However, the 
aiming sets may be 
some hundreds km 2 
e training samples, 
It is necessary to find such classification rules, which 
generalize the properties of training samples (being localized 
in a certain part of image only) for the whole area of 
interest. The approach based on the creation of data base of 
spectral knowledge seems to be an appropriate solution of the 
problem mentioned. Such classification system characterizes the 
target classes in terms of numerical rules, which reflect 
characterictic relations between spectral bands. The 
band-to-band relations describe the shape of the spectral 
reflectance curves [ 1 ]. 
The spectral knowledge based classification - overview 
The spectral knowledge based approach prefers the description 
of target classes on the basis of certain relations between 
individual spectral features [ 1 ]. This approach can be used 
to avoid the scene-specific limitations - the data base of 
spectral knowledge can be used (to a certain extent only) for 
classification of further scenes. ine target classes are 
described using the inequalities (so called spectral 
relations), which can be written in the general form 
SI > T , 
where SI is a spectral index (a numerical expression in terms 
of spectral features) and T is a threshold. Every spectral 
relation is evaluated in regard to the ability to separate 
various subsets of target classes. It is necessary to find 
out, which target classes fulfil a certain spectral relation. 
This knowledge can be used for target classes discrimination 
using a binary tree classifier. Ihe whole classification 
procedure could be divided into following steps: 
- collection of suitable training samples for every class 
325
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Volume

METS METS (entire work) MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Volume

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Proceedings of the Symposium on Global and Environmental Monitoring. [Verlag nicht ermittelbar], 1990.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fourth digit in the number series 987654321?:

I hereby confirm the use of my personal data within the context of the enquiry made.