Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Proceedings International Workshop on Mobile Mapping Technology

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Proceedings International Workshop on Mobile Mapping Technology

Monograph

Persistent identifier:
856671290
Author:
Li, Rongxing
Title:
Proceedings International Workshop on Mobile Mapping Technology
Sub title:
April 21 - 23, 1999, Bangkok, Thailand
Scope:
1 Online-Ressource (Getr. Zählung [ca. 400 Seiten])
Year of publication:
1999
Place of publication:
London
Publisher of the original:
RICS Books
Identifier (digital):
856671290
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
[Session 5A: Applications (1)]
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE. A. R. SILVA, J. C. BATISTA, R. A. OLIVEIRA, P. O. CAMARGO and J. F. C. SILVA.
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Proceedings International Workshop on Mobile Mapping Technology
  • Cover
  • ColorChart
  • Title page
  • Title page
  • Proceedings of International Workshop on Mobile Mapping Technology April 21-23, 1999, Maruay Garden Hotel, Bangkok, Thailand
  • Greeting from Bangkok.
  • PREFACE.
  • On behalf of the International Association of Geodesy (IAG) Working Group [...]
  • TECHNICAL PROGRAM.
  • [Session 1: Mobile Mapping (1)]
  • A ROBUST METHOD FOR REGISTERING 2.5D LASER RANGE IMAGES OF URBAN OBJECTS. Huijing ZHAO, Ryosuke SHIBASAKI.
  • AN INTELLIGENT MOBILE MAPPING SYSTEM. Naser El-Sheimy, Mike Chapman, and C. Tao.
  • A Mobile Mapping System Based on GPS, GIS and Multi-sensor. Deren Li.
  • AIRPORT DATA BASIS FOR TAGSY GUIDANCE SYSTEMS. W. Möhlenbrink, R. Bettermann.
  • INTEGRATING TECHNOLOGIES: DGPS, DEAD RECKONING AND MAP MATCHING. T. A. Hailes.
  • [Session 2: Mobile Mapping (2)]
  • FILTERALGORITHMS FOR OPTIMAL DETERMINATION OF POSITION AND ATTITUDE OF THE MOBILE MAPPING SYSTEM KISS. H. Sternberg, W. Caspary and H. Heister.
  • DEVELOPMENT OF AN INTEGRATED SYSTEM FOR MAPPING ROAD WIDTH USING DIGITAL VIDEO AND GLOBAL POSITIONING SYSTEM. Shanmugam Ganeshkumar, Kiyoshi HONDA, Shunji MURAI.
  • DIRECT PLATFORM ORIENTATION IN AERIAL AND LAND-BASED MAPPING PRACTICE. Dorota A. Grejner-Brzezinska, Charles K. Toth and Edward Oshel.
  • TOWARDS AUTOMATED PROCESSING OF MOBILE MAPPING IMAGE SEQUENCES. C. Tao, M. A. Chapman, and N. El-Sheimy, B. Chaplin.
  • [Poster Session (1) on Airborne & Spaceborne Remote Sensing (JARS)]
  • Generation of Digital Elevation Model derived from JERS1 SAR Interferometry. Mitsuharu TOKUNAGA.
  • GENERALIZATION TECHNIQUES FOR LAYERED NEURAL NETWORKS IN THE CLASSIFICATION OF REMOTELY SENSED IMAGES. Eihan SHIMIZU and Morito TSUTSUMI, Le Van TRUNG.
  • THE CRANES' NESTING ANALYSIS USING GIS - LANDSCAPE ECOLOGICAL APPLICATIONS -. Koichi HIRATA, Hiroshi MURAKAMI.
  • INTERPRETABILITY OF GEOGRAPHIC INFORMATION FROM HIGH RESOLUTION SATELLITE IMAGES. Toshiaki Hashimoto.
  • Reassessment of Todaro's Migration Model to Incorporate Socioeconomic and Natural Resource Environment by Using Remote Sensing and GIS: A Case of Thailand. Bhuwneshwar Prasad SAH, Eihan SHIMIZU and Morito TSUTSUMI.
  • LAND COVER OF ASIA. Ryutaro Tateishi.
  • Development of Drain Direction Model based onGTOPO30 and Global Data Sets. Shiro Ochi and Ryosuke Shibasaki.
  • [Session 3: Kinematic Real-time Positioning]
  • Positioning Principles and Accuracy of Airborne Laser- Ranging & Multispectral-lmaging Mapping System. Liu Shaochuang, You Hongjian, Xiang Maosheng, Liu Tong, Li Shukai.
  • Accuracy Assessment and Improvement for Level Survey using Real Time Kinematic (RTK) GPS. Dinesh Manandhar, Kiyoshi Honda, Shunji Murai, Sachio Kubo, Masahiro Yonemura.
  • Airborne Mapping System with GPS-supported Aerotriangulation. Deren Li, Xiuxiao Yuan.
  • [Session 4: Sensor Integration and Calibration]
  • The Calibration of Imaging Sensors Integrated into a Rapid Route Mapping System. C. S. Fraser, A. M. Judd.
  • CALIBRATING A ZOOM LENS CCD CAMERA FOR A TERRESTRIAL IMAGE BASED SURVEY SYSTEM. Y. D. Huang and D. Chen.
  • METHOD FOR ACCURATE CAMERA ORIENTATION FOR AUTOMOBILE PHOTOGRAMMETRIC SYSTEM. V. A. Knyaz, S. Yu. Zheltov.
  • MULTI-SENSOR MAP MATCHING CONCEPTS FOR POSITIONING OF ROAD AND RAIL VEHICLES. R. Czommer, W. Möhlenbrink.
  • SENSOR INTEGRATION AND CALIBRATION OF DIGITAL AIRBORNE THREE-LINE CAMERA SYSTEMS. Michael Cramer, Dirk Stallmann and Norbert Haala.
  • [Session 5A: Applications (1)]
  • Application of Photogrammetric Image Data for Roadway Construction. Guangping He.
  • SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE. A. R. SILVA, J. C. BATISTA, R. A. OLIVEIRA, P. O. CAMARGO and J. F. C. SILVA.
  • [Session 5B: Real-time Imaging (ARIDA)]
  • ESTIMATION OF ACCURACY OF AIRBORNE LASER PROFILING. Koukichi Kimura, Teruvoshi Fujiwara, Yukihide Akiyama.
  • CRACK SITUATION GRASP OF DIGITAL IMAGE METHOD. Tatuhide NAKANE, Hisasi TAKAGI, Masaharu OZAWA.
  • Mobile Mapping Technologies for Safety Driving Assistance in ITS. Yutaka Shimogaki, Tooru Kitagawa, Yoshiki Yamano, Katunori Takahashi.
  • [Session 6A: Applications (2)]
  • Virtual Reality Model Created from Mobile Mapping Data as Interface to GIS. Krzysztof Gajdamowicz.
  • IMPROVED DEM EXTRACTION TECHNIQUES - COMBINING LIDAR DATA WITH DIRECT DIGITAL GPS/INS ORIENTED IMAGERY. Charles K. Toth and Dorota A. Grejner-Brzezinska.
  • Focal Plane Image Assembly of Subpixel. Si-Dong Zhong, Tian chan Mei.
  • [Session 6B: Real-time Imaging (ARIDA)]
  • A Tracking System for Construction vehicles with DGPS and RTK-GPS. Shun'ichi OHTSU, Tomonori TAKADA, Tatsunori SADA.
  • A METHOD OF ROAD REPRESENTATION IN 3D MAPPING TECHNOLOGY. Tsukasa Hosomura.
  • Fundamental Study on Ground-Based Sensor Integration for Spatial Data Acquisition. Mitsunori YOSHIMURA, Tetsuji ANAI, Hirofumi CHIKATSU, Ryosuke SHIBASAKI.
  • Fundamental Study on Development and Application of the Local Positioning System using Accelerometer and Gyroscope. Toshio KOIZUMI, Yasuyuki SHIRAI, Atsuro TAKEMOTO.
  • [Poster Session (2) on Imaging Sensing (ARIDA)]
  • THE METHOD OF Field INVESTIGATIONS USING DIGITAL IMAGE. Toshiaki Taguchi, Kosuke Tsuru, Hirofumi Chikatsu.
  • PERFORMANCE OF ARTIFICIAL RETINA CAMERA AND ITS APPLICATION. Yoichi KUNII, Hirofumi CHIKATSU.
  • MOTION ANALYSIS ON THE CONSTRUCTION PLANT USING SEQUENTIAL IMAGES. Sosuke YOSHIDA, Hirofumi CHIKATSU.
  • AUTO-TRACKING AND 3D MEASUREMENT FOR MOVING OBJECT USING VIDEO THEODOLITE. Tsutomu KAKIUCHI, Hirofumi CHIKATSU.
  • Generation of 3D View Map Using by Raster Base Data Processing. Kunihiko Ono, Shunji Murai, Vivarad Phonekeo and Shigetaka Yasue.
  • REMAPPING OF HISTORICAL MAPS USING MATHEMATICAL MORPHOLOGY AND ITS APPLICATION. Nobuhiro YAMADA, Hirofumi CHIKATSU.
  • A Comparative Study on Techniques for Optical Flow Estimation : On the Application to Vehicle Motion Analysis. Takashi FUSE and Eihan SHIMIZU.
  • Dynamic Analysis of Human Motion using Digital Video Camera mounted on Video Theodolite. Tetsuji ANAI, Hirofumi CHIKATSU.
  • A New Measurement System of Settlement At Airports Using GPS and Laser Level. Bunji Shigematsu.
  • [Session 7A: Automatic Object Extraction and Recognition]
  • INTEGRATION OF FEATURE AND SIGNAL MATCHING FOR OBJECT SURFACE EXTRACTION. Pakom Apaphant, James Bethel.
  • FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS. Fei Ma and Ron Li.
  • A MULTILAYER HOPFIELD NEURAL NETWORK FOR 3-D OBJECT RECOGNITION. Zhuowen Tu and Ron Li.
  • DATABASE GUIDED VERIFICATION AND UPDATING OF TRANSPORTATION OBJECTS WITH VERTICAL LINE FEATURES FROM MOBILE MAPPING IMAGE SEQUENCES. C. Tao.
  • Traffic Sign Detection from Image Sequences. W. B. Tong, J. Y. Hervé, P. Cohen.
  • ROBUSTNESS TEST TO OBJECT POSITIONING IN PROJECTIVE SPACE. Xingwen Wang, Deren Li.
  • [Session 7B: Mobile Mapping for Spatial Data Acquisition]
  • AUTOMATIC MEASUREMENT OF ROAD WIDTHS IN COLOUR STEREO SEQUENCES ACQUIRED BY A MOBILE MAPPING SYSTEM. Krzysztof Gajdamowicz.
  • Wearable Computing, Wireless Communication & Knowledge Discovery for Mobile Data Acquisition & Analysis. Klaus Brinkkötter-Runde and Ubbo Visser.
  • Development of a Low-Cost DGPS/DR System for Vehicle Tracking. Xiufeng He, Thor I. Fossen and Yongqi Chen.
  • OFF Method and Its Practice on Airborne GPS Data Processing for Photogrammetry. Chen Xiaoming, Liu Jiyu, Li Deren.
  • List of Registered Participants
  • Cover

Full text

5A-5-1 
SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE 
A. R. SILVA 1 , J. C. BATISTA 1 , R. A. OLIVEIRA 1 , P. O. CAMARGO 2 and J. F. C. SILVA 2 
'Cartographic Engineering Undergraduate Program 
2 Department of Cartography and Center of Mapping 
Universidade Estadual Paulista - UNESP 
19060-900 Presidente Prudente SP 
Brazil 
http://www.prudente.unesp.br/dcartog/dcartog.htm 
jfcsilva@prudente.unesp.br 
KEY WORDS: surveying, mapping, terrestrial photogrammetry, street scenes, capstone project. 
ABSTRACT 
A 1:2000 street map was made based on a topographic surveying by photogrammetric traverse technique. Photogrammetric 
traverse concatenates terrestrial stereo-pairs. The technique is suitable to map roads and streets surveyed by mobile mapping 
system terrestrial platform. Two urban blocks were surveyed by photogrammetric traverse and a street map was made using 
a collection of different equipment, hardware and software. Street images were acquired by a simple digital camera (Kodak 
DC40) mounted on a tripod which was moved forward to simulate the vehicle trip along the streets. The same thing was 
done to the antenna of the rover GPS receiver while the fixed receiver stayed on a reference station. The camera perspective 
centers were positioned by GPS surveying and the orientation angles were computed by bundle block adjustment. GPS data 
were processed by Ashtech Reliance vl.40. Digital images were processed by Kodak PhotoEnhancer vl.7 and by Zsoft 
PhotoFinish v3.0 to extract image coordinates (then transformed to photocoordinates). A bundle block adjustment (tftc), 
adapted to the particular geometry, computed the angular orientation and the coordinates of pass points and interest points. 
Autodesk AutoCAD Map vl.O was used for map edition and Golden Software Surfer v6.0 interpolated the contour lines and 
DTM. 10% significance level statistic tests show that the trend analysis and map accuracy succeeded. Accuracy resulted 
around one meter approximately. This means the map may be classified as a class B map according to Brazilian 
cartographic criteria. In this particular case, the standard error is 0.5mm in map scale. 
1 INTRODUCTION 
The scientific and technical program of this workshop 
demonstrates how developed are the mobile systems to 
acquire spatial data for mapping and GIS (Geographic 
Information Systems) purposes. However there are 
situations that modem equipment lets a practical simulation 
arises with two goals in perspective. One is to give students 
the opportunity to merge distinct techniques in order to 
make a topographic map and the other to observe and 
analyze the results of applying distinct techniques under a 
different and modem approach. 
Particularly, we have decided to proceed with simulated 
situations of collecting data on streets to make maps using 
an alternative methodology called photogrammetric 
traverse. The idea behind this project was to provide an 
understanding of the map making process to a group of 
undergraduate students (capstone project). Despite of being 
an unconventional method for topographic mapping, the 
project also brought contributions to learn the relationship 
between the stages that connect the main phases of the data 
and information when it comes to the application of 
photogrammetric traverse. 
Although simulating a mobile mapping platform acquiring 
data, the project introduced the students to practical 
problems. GPS (Global Positioning System) data and 
digital images were grabbed on urban streets then 
processed and measured to extract topographic information 
about distinct objects which were represented in a digital 
map. Besides that, the results will help the analysis of real 
application data to be produced in the months to come by a 
platform that is being constructed. 
2 STREET SURVEYING AND 
PHOTOGRAMMETRIC TRAVERSE 
Reasons for surveying the streets 
Most people live in urban areas. Along the streets facility 
companies lay their networks say water and sewer, electric 
power, telecommunication, and many others. Poles and 
trees are quite common in typical urban scenes. They do 
help but at some extent they disturb people when walking 
on the sidewalks. Pedestrians and drivers (these 
representing a large collection of different vehicles) need a 
language to communicate to each other in favor of traffic 
security, which is expressed in signs and warnings, both 
horizontal and vertical. Not only architects and 
urbanologists argue for a comfortable urban environment 
where humans can live with dignity and happiness. We 
could continue and make a long list of nice words to justify 
the need for the street and road mapping. Briefly, from a 
technical point of view, an image database and digital maps 
will help the urban administrators to reach the standards of 
a better quality of life. Particularly, mobile mapping 
systems (MMS) seem to play an important role in 
collecting street and road data for mapping and GIS 
purposes.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

li, rongxing. Proceedings International Workshop on Mobile Mapping Technology. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many letters is "Goobi"?:

I hereby confirm the use of my personal data within the context of the enquiry made.