Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Proceedings International Workshop on Mobile Mapping Technology

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Proceedings International Workshop on Mobile Mapping Technology

Monograph

Persistent identifier:
856671290
Author:
Li, Rongxing
Title:
Proceedings International Workshop on Mobile Mapping Technology
Sub title:
April 21 - 23, 1999, Bangkok, Thailand
Scope:
1 Online-Ressource (Getr. Zählung [ca. 400 Seiten])
Year of publication:
1999
Place of publication:
London
Publisher of the original:
RICS Books
Identifier (digital):
856671290
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
[Poster Session (2) on Imaging Sensing (ARIDA)]
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
A Comparative Study on Techniques for Optical Flow Estimation : On the Application to Vehicle Motion Analysis. Takashi FUSE and Eihan SHIMIZU.
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Proceedings International Workshop on Mobile Mapping Technology
  • Cover
  • ColorChart
  • Title page
  • Title page
  • Proceedings of International Workshop on Mobile Mapping Technology April 21-23, 1999, Maruay Garden Hotel, Bangkok, Thailand
  • Greeting from Bangkok.
  • PREFACE.
  • On behalf of the International Association of Geodesy (IAG) Working Group [...]
  • TECHNICAL PROGRAM.
  • [Session 1: Mobile Mapping (1)]
  • A ROBUST METHOD FOR REGISTERING 2.5D LASER RANGE IMAGES OF URBAN OBJECTS. Huijing ZHAO, Ryosuke SHIBASAKI.
  • AN INTELLIGENT MOBILE MAPPING SYSTEM. Naser El-Sheimy, Mike Chapman, and C. Tao.
  • A Mobile Mapping System Based on GPS, GIS and Multi-sensor. Deren Li.
  • AIRPORT DATA BASIS FOR TAGSY GUIDANCE SYSTEMS. W. Möhlenbrink, R. Bettermann.
  • INTEGRATING TECHNOLOGIES: DGPS, DEAD RECKONING AND MAP MATCHING. T. A. Hailes.
  • [Session 2: Mobile Mapping (2)]
  • FILTERALGORITHMS FOR OPTIMAL DETERMINATION OF POSITION AND ATTITUDE OF THE MOBILE MAPPING SYSTEM KISS. H. Sternberg, W. Caspary and H. Heister.
  • DEVELOPMENT OF AN INTEGRATED SYSTEM FOR MAPPING ROAD WIDTH USING DIGITAL VIDEO AND GLOBAL POSITIONING SYSTEM. Shanmugam Ganeshkumar, Kiyoshi HONDA, Shunji MURAI.
  • DIRECT PLATFORM ORIENTATION IN AERIAL AND LAND-BASED MAPPING PRACTICE. Dorota A. Grejner-Brzezinska, Charles K. Toth and Edward Oshel.
  • TOWARDS AUTOMATED PROCESSING OF MOBILE MAPPING IMAGE SEQUENCES. C. Tao, M. A. Chapman, and N. El-Sheimy, B. Chaplin.
  • [Poster Session (1) on Airborne & Spaceborne Remote Sensing (JARS)]
  • Generation of Digital Elevation Model derived from JERS1 SAR Interferometry. Mitsuharu TOKUNAGA.
  • GENERALIZATION TECHNIQUES FOR LAYERED NEURAL NETWORKS IN THE CLASSIFICATION OF REMOTELY SENSED IMAGES. Eihan SHIMIZU and Morito TSUTSUMI, Le Van TRUNG.
  • THE CRANES' NESTING ANALYSIS USING GIS - LANDSCAPE ECOLOGICAL APPLICATIONS -. Koichi HIRATA, Hiroshi MURAKAMI.
  • INTERPRETABILITY OF GEOGRAPHIC INFORMATION FROM HIGH RESOLUTION SATELLITE IMAGES. Toshiaki Hashimoto.
  • Reassessment of Todaro's Migration Model to Incorporate Socioeconomic and Natural Resource Environment by Using Remote Sensing and GIS: A Case of Thailand. Bhuwneshwar Prasad SAH, Eihan SHIMIZU and Morito TSUTSUMI.
  • LAND COVER OF ASIA. Ryutaro Tateishi.
  • Development of Drain Direction Model based onGTOPO30 and Global Data Sets. Shiro Ochi and Ryosuke Shibasaki.
  • [Session 3: Kinematic Real-time Positioning]
  • Positioning Principles and Accuracy of Airborne Laser- Ranging & Multispectral-lmaging Mapping System. Liu Shaochuang, You Hongjian, Xiang Maosheng, Liu Tong, Li Shukai.
  • Accuracy Assessment and Improvement for Level Survey using Real Time Kinematic (RTK) GPS. Dinesh Manandhar, Kiyoshi Honda, Shunji Murai, Sachio Kubo, Masahiro Yonemura.
  • Airborne Mapping System with GPS-supported Aerotriangulation. Deren Li, Xiuxiao Yuan.
  • [Session 4: Sensor Integration and Calibration]
  • The Calibration of Imaging Sensors Integrated into a Rapid Route Mapping System. C. S. Fraser, A. M. Judd.
  • CALIBRATING A ZOOM LENS CCD CAMERA FOR A TERRESTRIAL IMAGE BASED SURVEY SYSTEM. Y. D. Huang and D. Chen.
  • METHOD FOR ACCURATE CAMERA ORIENTATION FOR AUTOMOBILE PHOTOGRAMMETRIC SYSTEM. V. A. Knyaz, S. Yu. Zheltov.
  • MULTI-SENSOR MAP MATCHING CONCEPTS FOR POSITIONING OF ROAD AND RAIL VEHICLES. R. Czommer, W. Möhlenbrink.
  • SENSOR INTEGRATION AND CALIBRATION OF DIGITAL AIRBORNE THREE-LINE CAMERA SYSTEMS. Michael Cramer, Dirk Stallmann and Norbert Haala.
  • [Session 5A: Applications (1)]
  • Application of Photogrammetric Image Data for Roadway Construction. Guangping He.
  • SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE. A. R. SILVA, J. C. BATISTA, R. A. OLIVEIRA, P. O. CAMARGO and J. F. C. SILVA.
  • [Session 5B: Real-time Imaging (ARIDA)]
  • ESTIMATION OF ACCURACY OF AIRBORNE LASER PROFILING. Koukichi Kimura, Teruvoshi Fujiwara, Yukihide Akiyama.
  • CRACK SITUATION GRASP OF DIGITAL IMAGE METHOD. Tatuhide NAKANE, Hisasi TAKAGI, Masaharu OZAWA.
  • Mobile Mapping Technologies for Safety Driving Assistance in ITS. Yutaka Shimogaki, Tooru Kitagawa, Yoshiki Yamano, Katunori Takahashi.
  • [Session 6A: Applications (2)]
  • Virtual Reality Model Created from Mobile Mapping Data as Interface to GIS. Krzysztof Gajdamowicz.
  • IMPROVED DEM EXTRACTION TECHNIQUES - COMBINING LIDAR DATA WITH DIRECT DIGITAL GPS/INS ORIENTED IMAGERY. Charles K. Toth and Dorota A. Grejner-Brzezinska.
  • Focal Plane Image Assembly of Subpixel. Si-Dong Zhong, Tian chan Mei.
  • [Session 6B: Real-time Imaging (ARIDA)]
  • A Tracking System for Construction vehicles with DGPS and RTK-GPS. Shun'ichi OHTSU, Tomonori TAKADA, Tatsunori SADA.
  • A METHOD OF ROAD REPRESENTATION IN 3D MAPPING TECHNOLOGY. Tsukasa Hosomura.
  • Fundamental Study on Ground-Based Sensor Integration for Spatial Data Acquisition. Mitsunori YOSHIMURA, Tetsuji ANAI, Hirofumi CHIKATSU, Ryosuke SHIBASAKI.
  • Fundamental Study on Development and Application of the Local Positioning System using Accelerometer and Gyroscope. Toshio KOIZUMI, Yasuyuki SHIRAI, Atsuro TAKEMOTO.
  • [Poster Session (2) on Imaging Sensing (ARIDA)]
  • THE METHOD OF Field INVESTIGATIONS USING DIGITAL IMAGE. Toshiaki Taguchi, Kosuke Tsuru, Hirofumi Chikatsu.
  • PERFORMANCE OF ARTIFICIAL RETINA CAMERA AND ITS APPLICATION. Yoichi KUNII, Hirofumi CHIKATSU.
  • MOTION ANALYSIS ON THE CONSTRUCTION PLANT USING SEQUENTIAL IMAGES. Sosuke YOSHIDA, Hirofumi CHIKATSU.
  • AUTO-TRACKING AND 3D MEASUREMENT FOR MOVING OBJECT USING VIDEO THEODOLITE. Tsutomu KAKIUCHI, Hirofumi CHIKATSU.
  • Generation of 3D View Map Using by Raster Base Data Processing. Kunihiko Ono, Shunji Murai, Vivarad Phonekeo and Shigetaka Yasue.
  • REMAPPING OF HISTORICAL MAPS USING MATHEMATICAL MORPHOLOGY AND ITS APPLICATION. Nobuhiro YAMADA, Hirofumi CHIKATSU.
  • A Comparative Study on Techniques for Optical Flow Estimation : On the Application to Vehicle Motion Analysis. Takashi FUSE and Eihan SHIMIZU.
  • Dynamic Analysis of Human Motion using Digital Video Camera mounted on Video Theodolite. Tetsuji ANAI, Hirofumi CHIKATSU.
  • A New Measurement System of Settlement At Airports Using GPS and Laser Level. Bunji Shigematsu.
  • [Session 7A: Automatic Object Extraction and Recognition]
  • INTEGRATION OF FEATURE AND SIGNAL MATCHING FOR OBJECT SURFACE EXTRACTION. Pakom Apaphant, James Bethel.
  • FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS. Fei Ma and Ron Li.
  • A MULTILAYER HOPFIELD NEURAL NETWORK FOR 3-D OBJECT RECOGNITION. Zhuowen Tu and Ron Li.
  • DATABASE GUIDED VERIFICATION AND UPDATING OF TRANSPORTATION OBJECTS WITH VERTICAL LINE FEATURES FROM MOBILE MAPPING IMAGE SEQUENCES. C. Tao.
  • Traffic Sign Detection from Image Sequences. W. B. Tong, J. Y. Hervé, P. Cohen.
  • ROBUSTNESS TEST TO OBJECT POSITIONING IN PROJECTIVE SPACE. Xingwen Wang, Deren Li.
  • [Session 7B: Mobile Mapping for Spatial Data Acquisition]
  • AUTOMATIC MEASUREMENT OF ROAD WIDTHS IN COLOUR STEREO SEQUENCES ACQUIRED BY A MOBILE MAPPING SYSTEM. Krzysztof Gajdamowicz.
  • Wearable Computing, Wireless Communication & Knowledge Discovery for Mobile Data Acquisition & Analysis. Klaus Brinkkötter-Runde and Ubbo Visser.
  • Development of a Low-Cost DGPS/DR System for Vehicle Tracking. Xiufeng He, Thor I. Fossen and Yongqi Chen.
  • OFF Method and Its Practice on Airborne GPS Data Processing for Photogrammetry. Chen Xiaoming, Liu Jiyu, Li Deren.
  • List of Registered Participants
  • Cover

Full text

P2-7-1 
A Comparative Study on Techniques for Optical Flow Estimation 
: On the Application to Vehicle Motion Analysis 
Takashi FUSE and Eihan SHIMIZU 
Department of Civil Engineering 
University of Tokyo 
JAPAN 
fuse@planner.t.u-tokyo.ac.jp, shimizu@planner.t.u-tokyo.ac.jp 
KEY WORDS: Optical Flow, Gradient-Based Approach, Vehicle Motion Analysis. 
ABSTRACT 
The most readily available motion parameter from sequential image is optical flow. Among various optical flow 
estimation techniques, gradient-based approach is common. This approach is based on the assumption that the brightness 
of a point in the image remains constant during a short time interval, while the location of that point in the image may 
change due to motion. This assumption leads to a single local constraint on the optical flow at a certain point in the image. 
It is, however, ill-posed as the constraint constitutes only one equation of two unknowns, that is, x-component and y- 
component of the flow vector. In order to solve this problem, various methods have been proposed. There are, however, 
only a few comparative studies from the viewpoint of the application to the specific and practical motion analysis. This 
paper compiles the gradient-based approaches and compares their performance empirically from the point of view of 
application to vehicle motion analysis. The basic methods of gradient-based approach are compiled as follows: (1) 
Increase in the number of observation equations by the assumption that a constant velocity over each spatial neighborhood 
(spatial local optimization method), by a constant velocity over temporal neighborhood (temporal local optimization 
method), by use of three channels (RGB, HSI) of each pixel (multispectral constraints method) and by their combination; 
(2) Imposition of a condition, such as spatial smoothness of optical flow (spatial global optimization method), temporal 
smoothness (temporal global optimization method) and their combination. The result of empirical comparison shows the 
difficulty of estimation of precise and dense optical flow by ordinary gradient-based approaches, when sequential images 
are taken at an interval about 1/30 seconds. It argues that the results which are solved by spatial local optimization 
method are better than by other gradient-based approaches, and the method can track vehicles on 2D screen. Moreover, it 
is difficult to analyze vehicle motion by using ordinary gradient-based approaches, when sequential images are taken at an 
interval about 1/30 seconds. 
1. INTRODUCTION 
Sequential image processing techniques have made 
progress for motion analysis under the improved 
performances of optical sensor and personal computers. 
3D reconstruction and structure from motion have been 
attempted, and the attempts will develop into computer 
vision or robot vision. For 3D reconstruction and 
structure from motion, stereo sequential images are 
employed. Stereo matching requires displacement 
vectors at feature points. In order to acquire the 
displacement vectors, the extraction techniques of the 
displacement vectors have been investigated. Optical 
flow is usually used as the displacement vector and 
gradient-based approach is common technique for optical 
flow estimation. This approach is based on the 
assumption that the brightness of a point in the image 
remains constant during a short time interval, while the 
location of that point in the image may change due to 
motion. This assumption leads to a single local constraint 
on the optical flow at a certain point in the image (Horn 
and Schunck, 1981). It is, however, ill-posed as the 
constraint constitutes only one equation of two unknowns, 
that is, x-component and y-component of the flow vector. 
Further constraints are, therefore, necessary to solve for 
two unknowns. In order to solve this problem, various 
methods have been proposed. It is said that these 
approaches have large influence upon the result. 
On the other hand, there have been only a few comparative 
studies from the viewpoint of the application to the specific 
and practical motion analysis. This paper compiles the 
gradient-based approaches and compares their performance 
empirically from the point of view of application to vehicle 
motion analysis. 
2. GRADIENT-BASED APPROACH 
2.1 Gradient Constraint Equation 
An equation that relates the change in image brightness at a 
point to the motion of the brightness pattern was derived 
by Horn and Schunck (1981). Let the image brightness at 
the point (x, y) in the image plane at time t be denoted by
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

li, rongxing. Proceedings International Workshop on Mobile Mapping Technology. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How much is one plus two?:

I hereby confirm the use of my personal data within the context of the enquiry made.