Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Proceedings International Workshop on Mobile Mapping Technology

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Proceedings International Workshop on Mobile Mapping Technology

Monograph

Persistent identifier:
856671290
Author:
Li, Rongxing
Title:
Proceedings International Workshop on Mobile Mapping Technology
Sub title:
April 21 - 23, 1999, Bangkok, Thailand
Scope:
1 Online-Ressource (Getr. Zählung [ca. 400 Seiten])
Year of publication:
1999
Place of publication:
London
Publisher of the original:
RICS Books
Identifier (digital):
856671290
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
[Session 7A: Automatic Object Extraction and Recognition]
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS. Fei Ma and Ron Li.
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Proceedings International Workshop on Mobile Mapping Technology
  • Cover
  • ColorChart
  • Title page
  • Title page
  • Proceedings of International Workshop on Mobile Mapping Technology April 21-23, 1999, Maruay Garden Hotel, Bangkok, Thailand
  • Greeting from Bangkok.
  • PREFACE.
  • On behalf of the International Association of Geodesy (IAG) Working Group [...]
  • TECHNICAL PROGRAM.
  • [Session 1: Mobile Mapping (1)]
  • A ROBUST METHOD FOR REGISTERING 2.5D LASER RANGE IMAGES OF URBAN OBJECTS. Huijing ZHAO, Ryosuke SHIBASAKI.
  • AN INTELLIGENT MOBILE MAPPING SYSTEM. Naser El-Sheimy, Mike Chapman, and C. Tao.
  • A Mobile Mapping System Based on GPS, GIS and Multi-sensor. Deren Li.
  • AIRPORT DATA BASIS FOR TAGSY GUIDANCE SYSTEMS. W. Möhlenbrink, R. Bettermann.
  • INTEGRATING TECHNOLOGIES: DGPS, DEAD RECKONING AND MAP MATCHING. T. A. Hailes.
  • [Session 2: Mobile Mapping (2)]
  • FILTERALGORITHMS FOR OPTIMAL DETERMINATION OF POSITION AND ATTITUDE OF THE MOBILE MAPPING SYSTEM KISS. H. Sternberg, W. Caspary and H. Heister.
  • DEVELOPMENT OF AN INTEGRATED SYSTEM FOR MAPPING ROAD WIDTH USING DIGITAL VIDEO AND GLOBAL POSITIONING SYSTEM. Shanmugam Ganeshkumar, Kiyoshi HONDA, Shunji MURAI.
  • DIRECT PLATFORM ORIENTATION IN AERIAL AND LAND-BASED MAPPING PRACTICE. Dorota A. Grejner-Brzezinska, Charles K. Toth and Edward Oshel.
  • TOWARDS AUTOMATED PROCESSING OF MOBILE MAPPING IMAGE SEQUENCES. C. Tao, M. A. Chapman, and N. El-Sheimy, B. Chaplin.
  • [Poster Session (1) on Airborne & Spaceborne Remote Sensing (JARS)]
  • Generation of Digital Elevation Model derived from JERS1 SAR Interferometry. Mitsuharu TOKUNAGA.
  • GENERALIZATION TECHNIQUES FOR LAYERED NEURAL NETWORKS IN THE CLASSIFICATION OF REMOTELY SENSED IMAGES. Eihan SHIMIZU and Morito TSUTSUMI, Le Van TRUNG.
  • THE CRANES' NESTING ANALYSIS USING GIS - LANDSCAPE ECOLOGICAL APPLICATIONS -. Koichi HIRATA, Hiroshi MURAKAMI.
  • INTERPRETABILITY OF GEOGRAPHIC INFORMATION FROM HIGH RESOLUTION SATELLITE IMAGES. Toshiaki Hashimoto.
  • Reassessment of Todaro's Migration Model to Incorporate Socioeconomic and Natural Resource Environment by Using Remote Sensing and GIS: A Case of Thailand. Bhuwneshwar Prasad SAH, Eihan SHIMIZU and Morito TSUTSUMI.
  • LAND COVER OF ASIA. Ryutaro Tateishi.
  • Development of Drain Direction Model based onGTOPO30 and Global Data Sets. Shiro Ochi and Ryosuke Shibasaki.
  • [Session 3: Kinematic Real-time Positioning]
  • Positioning Principles and Accuracy of Airborne Laser- Ranging & Multispectral-lmaging Mapping System. Liu Shaochuang, You Hongjian, Xiang Maosheng, Liu Tong, Li Shukai.
  • Accuracy Assessment and Improvement for Level Survey using Real Time Kinematic (RTK) GPS. Dinesh Manandhar, Kiyoshi Honda, Shunji Murai, Sachio Kubo, Masahiro Yonemura.
  • Airborne Mapping System with GPS-supported Aerotriangulation. Deren Li, Xiuxiao Yuan.
  • [Session 4: Sensor Integration and Calibration]
  • The Calibration of Imaging Sensors Integrated into a Rapid Route Mapping System. C. S. Fraser, A. M. Judd.
  • CALIBRATING A ZOOM LENS CCD CAMERA FOR A TERRESTRIAL IMAGE BASED SURVEY SYSTEM. Y. D. Huang and D. Chen.
  • METHOD FOR ACCURATE CAMERA ORIENTATION FOR AUTOMOBILE PHOTOGRAMMETRIC SYSTEM. V. A. Knyaz, S. Yu. Zheltov.
  • MULTI-SENSOR MAP MATCHING CONCEPTS FOR POSITIONING OF ROAD AND RAIL VEHICLES. R. Czommer, W. Möhlenbrink.
  • SENSOR INTEGRATION AND CALIBRATION OF DIGITAL AIRBORNE THREE-LINE CAMERA SYSTEMS. Michael Cramer, Dirk Stallmann and Norbert Haala.
  • [Session 5A: Applications (1)]
  • Application of Photogrammetric Image Data for Roadway Construction. Guangping He.
  • SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE. A. R. SILVA, J. C. BATISTA, R. A. OLIVEIRA, P. O. CAMARGO and J. F. C. SILVA.
  • [Session 5B: Real-time Imaging (ARIDA)]
  • ESTIMATION OF ACCURACY OF AIRBORNE LASER PROFILING. Koukichi Kimura, Teruvoshi Fujiwara, Yukihide Akiyama.
  • CRACK SITUATION GRASP OF DIGITAL IMAGE METHOD. Tatuhide NAKANE, Hisasi TAKAGI, Masaharu OZAWA.
  • Mobile Mapping Technologies for Safety Driving Assistance in ITS. Yutaka Shimogaki, Tooru Kitagawa, Yoshiki Yamano, Katunori Takahashi.
  • [Session 6A: Applications (2)]
  • Virtual Reality Model Created from Mobile Mapping Data as Interface to GIS. Krzysztof Gajdamowicz.
  • IMPROVED DEM EXTRACTION TECHNIQUES - COMBINING LIDAR DATA WITH DIRECT DIGITAL GPS/INS ORIENTED IMAGERY. Charles K. Toth and Dorota A. Grejner-Brzezinska.
  • Focal Plane Image Assembly of Subpixel. Si-Dong Zhong, Tian chan Mei.
  • [Session 6B: Real-time Imaging (ARIDA)]
  • A Tracking System for Construction vehicles with DGPS and RTK-GPS. Shun'ichi OHTSU, Tomonori TAKADA, Tatsunori SADA.
  • A METHOD OF ROAD REPRESENTATION IN 3D MAPPING TECHNOLOGY. Tsukasa Hosomura.
  • Fundamental Study on Ground-Based Sensor Integration for Spatial Data Acquisition. Mitsunori YOSHIMURA, Tetsuji ANAI, Hirofumi CHIKATSU, Ryosuke SHIBASAKI.
  • Fundamental Study on Development and Application of the Local Positioning System using Accelerometer and Gyroscope. Toshio KOIZUMI, Yasuyuki SHIRAI, Atsuro TAKEMOTO.
  • [Poster Session (2) on Imaging Sensing (ARIDA)]
  • THE METHOD OF Field INVESTIGATIONS USING DIGITAL IMAGE. Toshiaki Taguchi, Kosuke Tsuru, Hirofumi Chikatsu.
  • PERFORMANCE OF ARTIFICIAL RETINA CAMERA AND ITS APPLICATION. Yoichi KUNII, Hirofumi CHIKATSU.
  • MOTION ANALYSIS ON THE CONSTRUCTION PLANT USING SEQUENTIAL IMAGES. Sosuke YOSHIDA, Hirofumi CHIKATSU.
  • AUTO-TRACKING AND 3D MEASUREMENT FOR MOVING OBJECT USING VIDEO THEODOLITE. Tsutomu KAKIUCHI, Hirofumi CHIKATSU.
  • Generation of 3D View Map Using by Raster Base Data Processing. Kunihiko Ono, Shunji Murai, Vivarad Phonekeo and Shigetaka Yasue.
  • REMAPPING OF HISTORICAL MAPS USING MATHEMATICAL MORPHOLOGY AND ITS APPLICATION. Nobuhiro YAMADA, Hirofumi CHIKATSU.
  • A Comparative Study on Techniques for Optical Flow Estimation : On the Application to Vehicle Motion Analysis. Takashi FUSE and Eihan SHIMIZU.
  • Dynamic Analysis of Human Motion using Digital Video Camera mounted on Video Theodolite. Tetsuji ANAI, Hirofumi CHIKATSU.
  • A New Measurement System of Settlement At Airports Using GPS and Laser Level. Bunji Shigematsu.
  • [Session 7A: Automatic Object Extraction and Recognition]
  • INTEGRATION OF FEATURE AND SIGNAL MATCHING FOR OBJECT SURFACE EXTRACTION. Pakom Apaphant, James Bethel.
  • FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS. Fei Ma and Ron Li.
  • A MULTILAYER HOPFIELD NEURAL NETWORK FOR 3-D OBJECT RECOGNITION. Zhuowen Tu and Ron Li.
  • DATABASE GUIDED VERIFICATION AND UPDATING OF TRANSPORTATION OBJECTS WITH VERTICAL LINE FEATURES FROM MOBILE MAPPING IMAGE SEQUENCES. C. Tao.
  • Traffic Sign Detection from Image Sequences. W. B. Tong, J. Y. Hervé, P. Cohen.
  • ROBUSTNESS TEST TO OBJECT POSITIONING IN PROJECTIVE SPACE. Xingwen Wang, Deren Li.
  • [Session 7B: Mobile Mapping for Spatial Data Acquisition]
  • AUTOMATIC MEASUREMENT OF ROAD WIDTHS IN COLOUR STEREO SEQUENCES ACQUIRED BY A MOBILE MAPPING SYSTEM. Krzysztof Gajdamowicz.
  • Wearable Computing, Wireless Communication & Knowledge Discovery for Mobile Data Acquisition & Analysis. Klaus Brinkkötter-Runde and Ubbo Visser.
  • Development of a Low-Cost DGPS/DR System for Vehicle Tracking. Xiufeng He, Thor I. Fossen and Yongqi Chen.
  • OFF Method and Its Practice on Airborne GPS Data Processing for Photogrammetry. Chen Xiaoming, Liu Jiyu, Li Deren.
  • List of Registered Participants
  • Cover

Full text

FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS 
Fei Ma and Ron Li 
Department of Civil and Environmental Engineering and Geodetic Science 
The Ohio State University, USA 
ma.85@osu.edu, li.282@osu.edu, 
KEY WORDS: feature extraction, edge detection, watershed transformation, GPS/INS, perspective geometry 
ABSTRACT 
This paper presents research results on feature extraction from mobile mapping imagery sequences using geometric constraints. A 
comprehensive feature extraction method is developed, where first, edges are detected using a multi-scale edge detector that combines 
first-order and second-order derivatives. Then multi-level thresholds are calculated to segment images. The result is used for further 
watershed transformation applied to improve the segmentation result. After edge selection and line linking, for example, preliminary 
road lines are detected with the help of GPS/INS data. In addition, based on perspective geometry, vertical and directional horizontal 
line segments are detected and used as seeds for extracting other objects. 
1. INTRODUCTION 
D ai = F(x, y) * T a (x, y) ,G 0i 
(4) 
Feature extraction is an area of active research in both 
photogrammetry and computer vision. In mobile mapping, it is 
also a critical step of object recognition. In the past, feature 
extraction has been divided into several stages, namely, low level 
image processing, edge detection, contour derivation, and shape 
modeling. The classical method is weak in dealing with complex 
scenes such as mobile mapping imagery. Later models, such as 
the deformable contour model (Kass et al. 1987), treated these 
problems in a general unified manner. They were used for road 
extraction from land-based and aerial images (Gruen and Li 
1997, Tao et al, 1998). This paper presents recent results of our 
study on feature extraction from mobile mapping imagery 
sequences through a multi-level approach using geometric 
constraints derived from GPS/INS data. 
2. A COMPOUND EDGE DETECTOR 
In our study, we combine LoG (Laplacian of Gaussian) and Drog 
(Derivative of Gaussian) operators into a compound edge 
detector (Li et al. 1998) to take advantages of information from 
second and first order derivatives. Mathematically, zero crossings 
of an image F(x,y) with two scale parameters are: 
G-. =F(x,y)*H^x,y) 0) 
G ai =F(x,y)*H 0i (x,y) (2) 
where * denotes convolution operation, H(x,y) represents LoG 
function, and oj and <?, are scale parameters (o' 1 < o\). 
Additionally, Drog operations with the constraint of G a are 
where T^y) represents the derivative of Gaussian. 
Thus, the edge detection works at two different scales. One for 
extracting the raw shape of an object, called initial resolution and 
the other for extracting the exact shape of the object and for 
distinguishing it from other similar objects. This is implemented 
by defining the initial scale <j, based on the result of the optimal 
edge detector of Canny (1986). The refined scale cr 2 is chosen 
according to the desired details. Edges detected at the initial 
resolution are intensified by edges detected at the refined 
resolution. Spurious noise is avoided by intersecting the results 
of the refined scale with that of the initial scale. 
Figures 1(a) to (d) are two stereo pairs of mobile mapping 
imagery from a sequence. Each image has 720 x 400 pixels. The 
pixel size is 0.0116 mm x 0.0136 mm. Left camera focal length is 
6.1288 mm and right camera focal length 6.1278mm. 
(Pair I) 
(a) Left 
I) 
(c) Left image (Pair II) 
(d) Right image (Pair II) 
Figure 1. Two pairs of mobile mapping images 
D a< =F(x,y)*T a Uy)-G a 
(3) Figures 2(a) to (d) are edge detection results at initial scale on 
four images in Figure 1. 
7A-2-1
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

li, rongxing. Proceedings International Workshop on Mobile Mapping Technology. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How much is one plus two?:

I hereby confirm the use of my personal data within the context of the enquiry made.