Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Proceedings International Workshop on Mobile Mapping Technology

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: Proceedings International Workshop on Mobile Mapping Technology

Monograph

Persistent identifier:
856671290
Author:
Li, Rongxing
Title:
Proceedings International Workshop on Mobile Mapping Technology
Sub title:
April 21 - 23, 1999, Bangkok, Thailand
Scope:
1 Online-Ressource (Getr. Zählung [ca. 400 Seiten])
Year of publication:
1999
Place of publication:
London
Publisher of the original:
RICS Books
Identifier (digital):
856671290
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
[Session 2: Mobile Mapping (2)]
Document type:
Monograph
Structure type:
Chapter

Chapter

Title:
FILTERALGORITHMS FOR OPTIMAL DETERMINATION OF POSITION AND ATTITUDE OF THE MOBILE MAPPING SYSTEM KISS. H. Sternberg, W. Caspary and H. Heister.
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Proceedings International Workshop on Mobile Mapping Technology
  • Cover
  • ColorChart
  • Title page
  • Title page
  • Proceedings of International Workshop on Mobile Mapping Technology April 21-23, 1999, Maruay Garden Hotel, Bangkok, Thailand
  • Greeting from Bangkok.
  • PREFACE.
  • On behalf of the International Association of Geodesy (IAG) Working Group [...]
  • TECHNICAL PROGRAM.
  • [Session 1: Mobile Mapping (1)]
  • A ROBUST METHOD FOR REGISTERING 2.5D LASER RANGE IMAGES OF URBAN OBJECTS. Huijing ZHAO, Ryosuke SHIBASAKI.
  • AN INTELLIGENT MOBILE MAPPING SYSTEM. Naser El-Sheimy, Mike Chapman, and C. Tao.
  • A Mobile Mapping System Based on GPS, GIS and Multi-sensor. Deren Li.
  • AIRPORT DATA BASIS FOR TAGSY GUIDANCE SYSTEMS. W. Möhlenbrink, R. Bettermann.
  • INTEGRATING TECHNOLOGIES: DGPS, DEAD RECKONING AND MAP MATCHING. T. A. Hailes.
  • [Session 2: Mobile Mapping (2)]
  • FILTERALGORITHMS FOR OPTIMAL DETERMINATION OF POSITION AND ATTITUDE OF THE MOBILE MAPPING SYSTEM KISS. H. Sternberg, W. Caspary and H. Heister.
  • DEVELOPMENT OF AN INTEGRATED SYSTEM FOR MAPPING ROAD WIDTH USING DIGITAL VIDEO AND GLOBAL POSITIONING SYSTEM. Shanmugam Ganeshkumar, Kiyoshi HONDA, Shunji MURAI.
  • DIRECT PLATFORM ORIENTATION IN AERIAL AND LAND-BASED MAPPING PRACTICE. Dorota A. Grejner-Brzezinska, Charles K. Toth and Edward Oshel.
  • TOWARDS AUTOMATED PROCESSING OF MOBILE MAPPING IMAGE SEQUENCES. C. Tao, M. A. Chapman, and N. El-Sheimy, B. Chaplin.
  • [Poster Session (1) on Airborne & Spaceborne Remote Sensing (JARS)]
  • Generation of Digital Elevation Model derived from JERS1 SAR Interferometry. Mitsuharu TOKUNAGA.
  • GENERALIZATION TECHNIQUES FOR LAYERED NEURAL NETWORKS IN THE CLASSIFICATION OF REMOTELY SENSED IMAGES. Eihan SHIMIZU and Morito TSUTSUMI, Le Van TRUNG.
  • THE CRANES' NESTING ANALYSIS USING GIS - LANDSCAPE ECOLOGICAL APPLICATIONS -. Koichi HIRATA, Hiroshi MURAKAMI.
  • INTERPRETABILITY OF GEOGRAPHIC INFORMATION FROM HIGH RESOLUTION SATELLITE IMAGES. Toshiaki Hashimoto.
  • Reassessment of Todaro's Migration Model to Incorporate Socioeconomic and Natural Resource Environment by Using Remote Sensing and GIS: A Case of Thailand. Bhuwneshwar Prasad SAH, Eihan SHIMIZU and Morito TSUTSUMI.
  • LAND COVER OF ASIA. Ryutaro Tateishi.
  • Development of Drain Direction Model based onGTOPO30 and Global Data Sets. Shiro Ochi and Ryosuke Shibasaki.
  • [Session 3: Kinematic Real-time Positioning]
  • Positioning Principles and Accuracy of Airborne Laser- Ranging & Multispectral-lmaging Mapping System. Liu Shaochuang, You Hongjian, Xiang Maosheng, Liu Tong, Li Shukai.
  • Accuracy Assessment and Improvement for Level Survey using Real Time Kinematic (RTK) GPS. Dinesh Manandhar, Kiyoshi Honda, Shunji Murai, Sachio Kubo, Masahiro Yonemura.
  • Airborne Mapping System with GPS-supported Aerotriangulation. Deren Li, Xiuxiao Yuan.
  • [Session 4: Sensor Integration and Calibration]
  • The Calibration of Imaging Sensors Integrated into a Rapid Route Mapping System. C. S. Fraser, A. M. Judd.
  • CALIBRATING A ZOOM LENS CCD CAMERA FOR A TERRESTRIAL IMAGE BASED SURVEY SYSTEM. Y. D. Huang and D. Chen.
  • METHOD FOR ACCURATE CAMERA ORIENTATION FOR AUTOMOBILE PHOTOGRAMMETRIC SYSTEM. V. A. Knyaz, S. Yu. Zheltov.
  • MULTI-SENSOR MAP MATCHING CONCEPTS FOR POSITIONING OF ROAD AND RAIL VEHICLES. R. Czommer, W. Möhlenbrink.
  • SENSOR INTEGRATION AND CALIBRATION OF DIGITAL AIRBORNE THREE-LINE CAMERA SYSTEMS. Michael Cramer, Dirk Stallmann and Norbert Haala.
  • [Session 5A: Applications (1)]
  • Application of Photogrammetric Image Data for Roadway Construction. Guangping He.
  • SURVEYING AND MAPPING OF URBAN STREETS BY PHOTOGRAMMETRIC TRAVERSE. A. R. SILVA, J. C. BATISTA, R. A. OLIVEIRA, P. O. CAMARGO and J. F. C. SILVA.
  • [Session 5B: Real-time Imaging (ARIDA)]
  • ESTIMATION OF ACCURACY OF AIRBORNE LASER PROFILING. Koukichi Kimura, Teruvoshi Fujiwara, Yukihide Akiyama.
  • CRACK SITUATION GRASP OF DIGITAL IMAGE METHOD. Tatuhide NAKANE, Hisasi TAKAGI, Masaharu OZAWA.
  • Mobile Mapping Technologies for Safety Driving Assistance in ITS. Yutaka Shimogaki, Tooru Kitagawa, Yoshiki Yamano, Katunori Takahashi.
  • [Session 6A: Applications (2)]
  • Virtual Reality Model Created from Mobile Mapping Data as Interface to GIS. Krzysztof Gajdamowicz.
  • IMPROVED DEM EXTRACTION TECHNIQUES - COMBINING LIDAR DATA WITH DIRECT DIGITAL GPS/INS ORIENTED IMAGERY. Charles K. Toth and Dorota A. Grejner-Brzezinska.
  • Focal Plane Image Assembly of Subpixel. Si-Dong Zhong, Tian chan Mei.
  • [Session 6B: Real-time Imaging (ARIDA)]
  • A Tracking System for Construction vehicles with DGPS and RTK-GPS. Shun'ichi OHTSU, Tomonori TAKADA, Tatsunori SADA.
  • A METHOD OF ROAD REPRESENTATION IN 3D MAPPING TECHNOLOGY. Tsukasa Hosomura.
  • Fundamental Study on Ground-Based Sensor Integration for Spatial Data Acquisition. Mitsunori YOSHIMURA, Tetsuji ANAI, Hirofumi CHIKATSU, Ryosuke SHIBASAKI.
  • Fundamental Study on Development and Application of the Local Positioning System using Accelerometer and Gyroscope. Toshio KOIZUMI, Yasuyuki SHIRAI, Atsuro TAKEMOTO.
  • [Poster Session (2) on Imaging Sensing (ARIDA)]
  • THE METHOD OF Field INVESTIGATIONS USING DIGITAL IMAGE. Toshiaki Taguchi, Kosuke Tsuru, Hirofumi Chikatsu.
  • PERFORMANCE OF ARTIFICIAL RETINA CAMERA AND ITS APPLICATION. Yoichi KUNII, Hirofumi CHIKATSU.
  • MOTION ANALYSIS ON THE CONSTRUCTION PLANT USING SEQUENTIAL IMAGES. Sosuke YOSHIDA, Hirofumi CHIKATSU.
  • AUTO-TRACKING AND 3D MEASUREMENT FOR MOVING OBJECT USING VIDEO THEODOLITE. Tsutomu KAKIUCHI, Hirofumi CHIKATSU.
  • Generation of 3D View Map Using by Raster Base Data Processing. Kunihiko Ono, Shunji Murai, Vivarad Phonekeo and Shigetaka Yasue.
  • REMAPPING OF HISTORICAL MAPS USING MATHEMATICAL MORPHOLOGY AND ITS APPLICATION. Nobuhiro YAMADA, Hirofumi CHIKATSU.
  • A Comparative Study on Techniques for Optical Flow Estimation : On the Application to Vehicle Motion Analysis. Takashi FUSE and Eihan SHIMIZU.
  • Dynamic Analysis of Human Motion using Digital Video Camera mounted on Video Theodolite. Tetsuji ANAI, Hirofumi CHIKATSU.
  • A New Measurement System of Settlement At Airports Using GPS and Laser Level. Bunji Shigematsu.
  • [Session 7A: Automatic Object Extraction and Recognition]
  • INTEGRATION OF FEATURE AND SIGNAL MATCHING FOR OBJECT SURFACE EXTRACTION. Pakom Apaphant, James Bethel.
  • FEATURE EXTRACTION FROM MOBILE MAPPING IMAGERY SEQUENCES USING GEOMETRIC CONSTRAINTS. Fei Ma and Ron Li.
  • A MULTILAYER HOPFIELD NEURAL NETWORK FOR 3-D OBJECT RECOGNITION. Zhuowen Tu and Ron Li.
  • DATABASE GUIDED VERIFICATION AND UPDATING OF TRANSPORTATION OBJECTS WITH VERTICAL LINE FEATURES FROM MOBILE MAPPING IMAGE SEQUENCES. C. Tao.
  • Traffic Sign Detection from Image Sequences. W. B. Tong, J. Y. Hervé, P. Cohen.
  • ROBUSTNESS TEST TO OBJECT POSITIONING IN PROJECTIVE SPACE. Xingwen Wang, Deren Li.
  • [Session 7B: Mobile Mapping for Spatial Data Acquisition]
  • AUTOMATIC MEASUREMENT OF ROAD WIDTHS IN COLOUR STEREO SEQUENCES ACQUIRED BY A MOBILE MAPPING SYSTEM. Krzysztof Gajdamowicz.
  • Wearable Computing, Wireless Communication & Knowledge Discovery for Mobile Data Acquisition & Analysis. Klaus Brinkkötter-Runde and Ubbo Visser.
  • Development of a Low-Cost DGPS/DR System for Vehicle Tracking. Xiufeng He, Thor I. Fossen and Yongqi Chen.
  • OFF Method and Its Practice on Airborne GPS Data Processing for Photogrammetry. Chen Xiaoming, Liu Jiyu, Li Deren.
  • List of Registered Participants
  • Cover

Full text

2-2-3 
tW0! ^systems 
im c °ntains an 
^isation, 
yros and thr% 
s aut °nomousi y 
^ KiSS. ^ 
laced in the left 
ial ^nsors are 
iati °ns, aiding 
' ^ese are zero 
cities from an 
iti°ns whenever 
:s using pseudo- 
hded with 5 Hz. 
iie the coverage 
v 20 per cent. 
rack of the van 
îochrome CCD- 
he situation in 
ing system with 
n a roof rack of 
0 50 min front 
both directions, 
1 by the system, 
ite and on the 
IS video system 
K synchronised 
n. 
3 POSTPROCESSING CONCEPT 
i The evaluation of all sensor data is carried out after the data 
i acquisition. The basic structure of this post-processing is outlined in 
; figure (3). It consists of two independent parallel computations: the 
I! determination of the trajectory and the object recognition. 
I| Subsequent to this step is the setup of the data base, the 
! determination of the alignment elements and the object positioning. 
Figure 3: Overview of the post-processing concept 
The determination of the trajectory is carried out by a cascaded 
filter system. The structure of this system is outlined in figure (4). It 
consists of two pre-processing steps and the main filter. 
! Figure 4: cascaded filter system with two pre-processing steps 
and central Kalman-Filter (including sensor signals) 
3.1 Pre -filtering of the trajectory observations 
In the first step of pre-processing the original measurement values 
are corrected and converted to pseudo-observations, like air 
pressure differences from the barometer readings to. height 
differences. 
In this step of the post-mission data processing it is also necessary 
to transform all the data from the individual sensor coordinate 
systems into a common reference frame. This is defined as the body 
system of the van with its origin given by the reference point of the 
IMU and axes parallel to the main axes of the van. This 
transformation is applied for both, position- and velocity 
determination. 
The second pre-processing step consists of smoothing all pseudo 
observations. The GPS Kalman filter is a completely independent 
Kalman filter, where the double-differenced pseudo-ranges from 
code measurement and the triple-differenced carrier phase 
measurements (phase rates) are processed as observations. Since 
changes in position can considerably be smoothed by GPS Kalman 
filtering all other pseudo-observations have to undergo filtering and 
smoothing algorithms in order to obtain the homogeneity of input 
data for central Kalman filtering. The filter-smoother automatically 
locates outliers and provides estimates of the precision. In order to 
obtain an optimal control on sensor signals and pseudo 
observations, respectively, all sensors are pre-processed separately 
and subsequently combined in a central Kalman-Filter with feed 
back. 
3.2 Central Kalman Filter 
The three-dimensional position as well as the velocity from GPS, 
the three rotation angles of the Inertial System, the velocity in 
direction of motion from the odometer and last not least the height 
change from barometer readings are introduced into the Kalman- 
Filter as observations. The observations are summarised in table 1. 
observations 
x, y, h 
3 D position from GPS 
vx,vy,vh 
3 D velocity from GPS 
<px, <py, <pz 
Azimuth from INS 
v odo 
velocity from odometer 
dh 
height differences from barometer 
Table 1 : The observations of the main Kalman Filter 
The theoretical and mathematical structure of the Kalman-Filter is 
an expansion of the one comprehensively described in (Wang 1997) 
and (Sternberg 1996, Sternberg 1998a) and therefore we have not to 
go into further details in this article. In contrast to conventional 
navigation filters being designed for the estimation of the error - 
state of the system, the position is directly estimated in this filter. 
Furthermore the azimuth, the tangential velocity of the system 
(equivalent to the velocity in moving direction) and the normal 
acceleration, which is perpendicular to the moving direction, are 
estimated in the main filter.
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

li, rongxing. Proceedings International Workshop on Mobile Mapping Technology. RICS Books, 1999.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How many grams is a kilogram?:

I hereby confirm the use of my personal data within the context of the enquiry made.